PRESSURE AND BLOOD FLOW LINKAGES AND IMPACTS ON PRESSURE ULCER DEVELOPMENT

Harvey N. Mayrovitz, Ph.D.
Director of Cardiovascular Research
Miami Heart Research Institute
Pressure

Tissue - Vascular Compression & Distortion

Blood Flow Reduction or Cessation

Tissue & Vascular Deficits, Injury and Breakdown

HN Μαψροωτς 1998
Blood Flow Reduction

Pressure

Sustained Intermittent

δ

Blood Flow Reduction

- How Much?
- How Long?
- Where?

ε

Tissue Injury and Breakdown

- Αδαπτατιον Δυρινγ Λοαδ?
- Οφφ-Λοαδ Ιντερσανα Ρεχουερν?
- Ρεχουερν Ποτεντιαλ?

Moisture-Temperature-Nutrition - Vascular Status-Age

HN Μαψρωςιτζ 1998
COMMON PRESSURE ULCER SITES

After Maklebust & Sieggreen, 1996
Layers (Stratum) of the Epidermis

- Keratinocyte Maturation
- Basal Stem Cells
- Melanocytes
- Langerhans cells
- Dead Keratinocytes
- Capillary
- O$_2$

Dermis

Corneum
Lucidum
Granulosum
Spinosum
Basale
Skin

Epidermis

Dermis

Arteriole

Artery

Fat

Nerve

Capillary

Duct

Pore

Hair
Epidermis

O₂

O₂

O₂

CO₂

H₂O

Vein

Lymphatic

Skin Circulation

HN Mayrovitz 1998
Muscle Cells
Endothelial Cells
Blood Flow Increases
Vasodilation

Arterioles Supply Tissue Needs

Relaxed

Muscle Cells
Contracted

Proective

Contract Stuff

Endothelial Cells

HN Mayrovitz 1998
Unmask Early Endothelial Dysfunction

Blood Vessel Responds to Natural Substances
Endothelial Cell Functional Changes

Arm Blood Flow

Blood Pressure
- Normal
- High

AGE

< 30 | 45-60 | > 60

< 30 | 45-60 | > 60
Transmural Pressure Effects Lumen Size

Blood Flows in Vessel Lumen

Connective Tissue “Rubber-Band”

Muscle Cells

\(P_0 \)

\(P_i \)

\(R \)
Local Factors Affecting Blood Flow

- Ενδοτηκελιαλ Φυσικτιον
- Μεχχανικαλ Φορχες
- Τισσιντ Ενσιρονμενε

\(P_0 \)

\(O_2 \)

\(P_i \)

\(CO_2 \)
Epidermis

- Compression
- Pressure
- Resistance

Capillary Blood Flow

Po(+)

Distortion
Twisting
Kinking

Reduced Blood Flow

©1997 HN Mayrovitz

Tissue Loading
Tissue Effects

Epidermis

Force

$O_2 (-)$

Intravascular Changes

$XO_2 (+)$

$O_2 (-)$

$H_2O (+)$

Reduced Blood Flow

©1997 HN Mayrovitz

HN Μαγροςίτς 1998
Epidermis

Defensive Measures

Convective Flow

Collateral Feed

Recruitment

Vasodilation

Compensatory Vascular Responses

HN Mayrovitz 1998
Detection of Blood Flow Changes

Low Resting Flow

Occluded Flow

Restored Flow

0 500
THERMAL IMAGING BY INFRARED

Фореарμ Σκιν ΒΑΣΕΛΙΝΕ

Heat off for 1-Minute

Heat off for 2-

Heat off for 7-Minutes

HN Μαγροσίτζ 1998
BLOOD PERFUSION BY LASER-DOPPLER IMAGING

Forearm heated to 44°C
Progressive Flow Compensation

Flow Response During Trochanter Loading

Flow

Hip-Down Loading

1-Hour

Hip-down loading on a multi-segmental dynamic surface
N=20 Women >= age 60. Mayrovitz et al., 1997
Similar findings: Xakellis et al., 1993 and Frantz et al., 1989
Implications for Ulcer Development

Absence of Flow Adaptation Under Load was Associated with Ulcer Development

Sanada et al., 1997
- 24 patients undergoing surgery
- 18 Abdominal - 6 spinal disk
- LDF @ sacral or iliac prominence

HN Μαγροποιτς 1998
Myogenic Compensation

Flow Response During Short-Term Heel Loading

- Flow
- Pressure
- 5 mmHg
- 15
- 35
- 45
- 2-min
- 55
- 65

Myogenic Adaptation
Myogenic Overload

HN Μαυροπιτς 1998
Heel Hyperemia After Local Loading

Temporal Response

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>LDI Perfusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
</tr>
<tr>
<td>6</td>
<td>600</td>
</tr>
<tr>
<td>8</td>
<td>800</td>
</tr>
<tr>
<td>10</td>
<td>1000</td>
</tr>
</tbody>
</table>

120 mmHg

HN Μαυρωτίς 1998
BLOOD FLOW RESPONSE TO OFF-LOADING

Duration of Heel Loading (minutes)

0 5 10 15 20

Heel LDI Perfusion (Hyperemic/Baseline)

Load = 120 mmHg
N = 14 Females

HN Μαυροπητζ 1998
BLOOD FLOW RESPONSE TO OFF-LOADING

Time After Load Removal (minutes)
0 1 2 3 4 5 6 7 8 9 10
Heel LDI Perfusion (Hyperemic/Baseline)

Load Duration (min)
- 2.5
- 5.0
- 10

HN Mayrovitz 1998
PEAK HYPEREMIA RESPONSE

% of Maximum Thermal Response

Load Duration = 10 minutes
Subjects = 14 Females

Heel Blood Perfusion
(Percent of Heated Maximum)

Heel Load (mmHg)

Load Duration = 10 minutes
Subjects = 14 Females

% of Maximum Thermal Response

Heel Blood Perfusion
(Percent of Heated Maximum)

Heel Load (mmHg)

HN Mayrovitz 1998
HYPEREMIA RECOVERY TIME

Load Duration = 10 minutes
Subjects = 14 Females
PRE-ΔΥΣΤΙΧ ΒΛΟΟΔ ΠΕΡΦΥΣΙΟΝ

ΣΤΑΤΙΧ ΣΥΡΦΑΚΕ

ΔΥΣΝΑΜΙΧ
15 χψχλε/ηρ

HN Μαυροποιτς 1998
ΤWO-HOUR ΣΥΠΙΝΕ ΛΨΙΝΓ

ΣΤΑΤΙΧ ΣΥΡΦΑΧΕ

ΔΥΝΑΜΙΧ 15 χψχλε/ηρ

HN Μαψρωτς 1998
BLOOD FLOW RESPONSE TO OFF-LOADING

Duration of Heel Loading (minutes)

Heel LDI Perfusion (Hyperemic/Baseline)

Load = 120 mmHg
N = 14 Females

©1997 HN Mayrovitz
HN Μαυρωπίτς 1998
PEAK HYPEREMIA RESPONSE

Relative to Average No-Load Baseline

Load Duration = 10 minutes
Subjects = 14 Females

Heel Blood Perfusion
(Ratio of Peak to Baseline)

Heel Load (mmHg)

0 30 60 90 120 150
HEEL HYPEREMIA RECOVERY TIME

Duration of Heel Loading (T_{Load} in minutes)

0 5 10 15 20

Perfusion Recovery Time (T_{R} minutes)

3
4
5
6
7
8
9
10

Load = 120 mmHg
N = 14 Females

$T_{R} = 3.40 + 0.27 \ T_{\text{Load}}$

$r^2 = 0.445, p < 0.001$
HEEL HYPEREMIC PEAK RESPONSE

Duration of Heel Loading (minutes)

0 5 10 15 20

Heel Blood Perfusion
(Percent of Heated Maximum)

40
50
60
70
80
90
100

Load = 120 mmHg
N = 14 Females