Physiological Considerations for Compression Bandaging

Harvey N. Mayrovitz, Ph.D.
Professor of Physiology
College of Medical Sciences
Nova Southeastern University
mayrovit@nsu.nova.edu
At the completion of this presentation participants will be able to:

1. State the difference between edema and lymphedema
2. State at least one process that can cause edema
3. Describe the basic processes involved in lymphatic transport
4. Describe long-stretch and short-stretch bandages and their use
5. Contrast the effects of resting vs. working pressures
6. Describe Laplace’s law as it applies to bandaging

Dr. HN Mayrovitz
Relationship to Wound Healing

Impediments to Healing
- Blood Flow
- Oxygenation
- Infection
- Tissue Environment

Deficit Origins
- Arterial
- Venous
- Microvascular
- Lymphatic

Localized Edema/Lymphedema

Compression Therapy

Dr. HN Mayrovitz
Normal Fluid Balance

Resorption

15

Blood Capillary

~27 liters/day

| Protein |

Filtration

PA

35 mmHg

\(\Pi = 25 \text{ mmHg} \)

\(\Pi = 25 \text{ mmHg} \)

~30 liters/day

\(\Pi = 25 \text{ mmHg} \)

Lymphatic Capillary

~3 liters/day

(10% of filtered)
Increased Venous Pressure or Capillary Permeability

- Less Resorption
- More Filtration

Dr. HN Mayrovitz
If Net Filtration Exceeds Lymphatic Transport Capacity

Overload = Edema

+ [Protein]

= Lymphedema

Therapy Options

• Reduce Filtration
• Increase Transport

Dr. HN Mayrovitz
Normal Lymph Transport

• Lymphangion Contraction
• Skeletal Muscle Pump
• Arterial Pulsations
• Body Movements
• Respiration

All are Dynamic Processes

Dr. HN Mayrovitz
Lymphatic Capillaries

Lymphatic Capillary

Lumen: $P_L > P_T$

EC

Anchoring Filaments

Blood Capillary

Lumen: $P_L < P_T$

EC

+P_T

Dr. HN Mayrovitz
Lymphatic ‘Hearts’

Peristaltic-like contractions propel lymph to next segment

Lymphangion (lymph micro heart)

Lymph Capillary

Walls have a muscular media

Valve

Contraction force is preload and afterload dependent - analogous to heart

Dr. HN Mayrovitz
Calf Muscle Pump and Normal Valves

Superficial

Deep

Relaxed

Contracted

Skin

Fascia

Skin

Fascia

Dr. HN Mayrovitz
Relaxed Calf Muscle Pump and Valve Dysfunction

Resting Venous Pressure INCREASED

Veins Distended

Contracted

• High pressure transmitted to Superficial Veins
• Pump Efficiency Reduced
Venous Valve Dysfunction

Chronic venous hypertension due to Chronic venous insufficiency (CVI) predisposes to developing venous ulcers

Increased Ambulatory Venous Pressure

Venous Pressure

Resting

Normal

CVI

Dr. HN Mayrovitz
Types of Compression

- Bandage → { Short-Stretch
- Bandage-like → Long-Stretch
- Bandage-like → Short-Stretch
- Pumps → Dynamic
- Stockings → { Prevention
 Maintenance
Arrangement

Superficial
- Drains Skin and Subcutis

Deep
- Vascular Sheath
- Muscle
- Bone

Dr. HN Mayrovitz
Vascular Sheath

Arterial Pulsations Can Mechanically Augment Lymph Transport

Dr. HN Mayrovitz
Arterial Flow Pulses

Below Knee Blood Flow via Nuclear Magnetic Resonance

Control Leg

ml/min

52

Treated Leg

ml/min

47

Before Bandage

Increased pulses likely augment Lymph/venous transport

With Bandage

52

49

74

Dr. HN Mayrovitz
Compartments

Tibia

Greater Saphenous

Anterior Tibial

Anterior

Lateral

Deep Posterior

Superficial Posterior

Fibula

Peroneal

Lesser Saphenous

Skin

Want Therapy to Affect Superficial and Deep

Dr. HN Mayrovitz
Skin

Pressures of Interest

• Sub-bandage
• Surface
• Contact

Compression Bandage or Device

Tibia

Tissue

Interstitial

Fibula

Soleus m.

Gastroc m.

Popliteus m.

Tibialis m.

Peroneus

Dr. HN Mayrovitz
Edema and Tissue Pressure

Normal

Loose Fibrous Trabeculae

P_T
Resting (Static) Pressure

Muscles Relaxed

Pressure due to bandage tension (T) projecting an inward radial pressure (P).

Superficial vessels affected the most

Laplace’s Law

$$P \sim \frac{T}{R}$$

Dr. HN Mayrovitz
Pressure Gradient Concept

Compression Applied at Constant Tension

\[P \sim \frac{T}{R} \]

Increasing \(R \)
Decreasing \(P \)

Mimics Normal Intravascular Pressure Gradient

Dr. HN Mayrovitz
Working (Dynamic) Pressure

Contracted Muscles

Bandage acts as a restraint to muscle expansion

Positive affect on deeper vessels

Pressure is developed from ‘within’

\[P \sim \text{Contraction Force} \times \text{‘Rigidity’} \]

Dr. HN Mayrovitz
Dynamic Pressure Depends on Bandage Material Features

Dynamic Pressure (ΔP)

- Form fitted steel pipe
- ‘short stretch’
- ‘long stretch’
- No external compression

Bandage ‘Stretchibility’

Dr. HN Mayrovitz
Working vs. Resting Pressures
Role of Compression Material

Tissue Pressure (P_T)

Emptying
Filling
Filling

Short Stretch
Long Stretch

Resting

Time

Dr. HN Mayrovitz
Overall Impact of Compression

Depends on both working and resting pressures

- **Filling**: Inflow $\sim P_U - P_T$
- **Emptying**: Outflow $\sim \Delta V \sim \Delta P_T$
- **Best**: Adequate resting P_T and High ΔP_T

Dr. HN Mayrovitz
Compression set at various static levels to compare dynamic sub-bandage pressures achieved with different bandages during calf muscle contraction and relaxation

*Pneumatic sensor: Talley Oxford Pressure Monitor
*Electronic Sensor: http://bioscience-research.net
Dynamic (Working) Pressures

Static Pressures Set by Compression

Dynamic pressures via calf muscle contraction

Comparison of Different Bandage Types

Efficient Dynamic Pressure

Inefficient Low Dynamic Pressure

Cohesive Elastic Multilayer

Dr. HN Mayrovitz
Multiple Choice Questions

1. According to Laplace’s law, if a limb is bandaged with constant tension, then the contact pressure experienced by the limb will be:
 a) greater where the limb is widest
 b) greater where the limb is narrowest*
 c) equal at all sites since the tension is constant
 d) least over areas of bony prominence such as the malleolus

2. A short-stretch bandage, as compared to a long-stretch:
 a) results in a greater resting pressure
 b) affects the deep vessels more than the superficial vessels
 c) results in a greater working pressure*
 d) has a greater effect on underlying blood vessels at rest

3. A short-stretch bandage provides more efficient venous and lymphatic filling and emptying because it produces:
 a) greater working pressure and greater resting pressure
 b) reduced working pressure and reduced resting pressure
 c) greater working pressure and reduced resting pressure*
 d) reduced working pressure and greater resting pressure

References