Biophysical Assessments for Lymphedema Detection in Patients with Breast Cancer before and One Year after Breast Cancer Surgery

Dr. Harvey N. Mayrovitz
College Medical Sciences
Nova SE University
Ft. Lauderdale FL
mayrovit@nova.edu
Goal: Earlier Detection and Intervention Women Diagnosed with Breast Cancer

A Rationale and Sensible Approach

Pre-Surgical Baseline

Periodic Follow-ups

Change Detection

Measures and Criteria
• Limb Volumes and Metrics
• Limb Bioimpedance
• Local Tissue Water

Therapy Initiation

Dr. HN Mayrovitz
Goal: Earlier Detection and Intervention

Not Often Done

Pre-Surgical Baseline

Can We Characterize?

Periodic Follow-ups

Change Detection?

N=76

Measures and Criteria
- Limb Volumes and Metrics
- Limb Bioimpedance
- Local Tissue Water

Therapy Initiation

Dr. HN Mayrovitz
Unilateral Breast Cancer Patients

Age range: 28 – 82 (59.6 ± 13.3 years)
BMI range: 17.8 – 48.1 (28.3 ± 6.4 Kg/m²)
Cancer: Dominant Arm Side 36/76 (47.4%)

Data as of 8/25/2011
Dr. HN Mayrovitz
Measurement Methods
Girth and Limb Volume Measurements

Girth at 4 cm intervals

Arm Volumes

<table>
<thead>
<tr>
<th>Segment Length (cm)</th>
<th>Total # Segments</th>
<th>Right Proximal</th>
<th>Right Distal</th>
<th>Left Proximal</th>
<th>Left Distal</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>12</td>
<td>1390</td>
<td>722</td>
<td>1390</td>
<td>731</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Limb Volumes</th>
<th>Right</th>
<th>Left</th>
<th>Edema</th>
<th>%Edema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Volume (ml)</td>
<td>2112</td>
<td>2122</td>
<td>-0.10</td>
<td>-0.5</td>
</tr>
<tr>
<td>Limb only (ml)</td>
<td>2112</td>
<td>2122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand only (ml)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visit 3

<table>
<thead>
<tr>
<th>Affected Limb</th>
<th>Limb Length</th>
<th>Segment Length (cm)</th>
<th>Total # Segments</th>
<th>Right Proximal</th>
<th>Right Distal</th>
<th>Left Proximal</th>
<th>Left Distal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Limb</td>
<td>12</td>
<td>4</td>
<td>12</td>
<td>1390</td>
<td>722</td>
<td>1390</td>
<td>731</td>
</tr>
</tbody>
</table>

From data there are 12 full segments plus one partial segment of length 4 cm. Note that the first circumference pair to be entered is for "0" cm corresponds to either the wrist or ankle.

<table>
<thead>
<tr>
<th>Circumferences (cm)</th>
<th>Segment</th>
<th>Right</th>
<th>Left</th>
<th>Number</th>
<th>Volume (ml)</th>
<th>Right</th>
<th>Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15.2</td>
<td>15.5</td>
<td>1</td>
<td>60</td>
<td>74</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15.3</td>
<td>15.4</td>
<td>1</td>
<td>61</td>
<td>81</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>16.5</td>
<td>16.6</td>
<td>2</td>
<td>82</td>
<td>103</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>19.4</td>
<td>19.5</td>
<td>3</td>
<td>103</td>
<td>139</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>21.7</td>
<td>21.9</td>
<td>4</td>
<td>135</td>
<td>158</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>22.9</td>
<td>23</td>
<td>5</td>
<td>158</td>
<td>171</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>23.5</td>
<td>23.5</td>
<td>6</td>
<td>171</td>
<td>183</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>24.7</td>
<td>24.5</td>
<td>7</td>
<td>183</td>
<td>214</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>25.5</td>
<td>25.5</td>
<td>8</td>
<td>214</td>
<td>241</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>26.4</td>
<td>26.2</td>
<td>9</td>
<td>241</td>
<td>271</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>28.4</td>
<td>28.1</td>
<td>10</td>
<td>271</td>
<td>293</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>29.2</td>
<td>30</td>
<td>11</td>
<td>293</td>
<td>324</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>31.8</td>
<td>31.5</td>
<td>12</td>
<td>324</td>
<td>357</td>
<td>357</td>
<td></td>
</tr>
</tbody>
</table>

www.limbvolumes.org

Dr. HN Mayrovitz
MoistureMeter-D

- Low power 300 MHz incident wave
- Reflected wave depends on the tissue’s dielectric constant
- Dielectric constant depends on total tissue water (free + bound)
- Pure water has a dielectric constant of about 78
- Can measure at almost any anatomic site

Penetration Depth (0.5 – 5 mm)

Dr. HN Mayrovitz
TDC: Tissue Sampling Principle

Ultrasound images (20 MHz) modified from Mellor et al. 2004 (The Breast Journal, 2004;10:496-503)
TDC: Tissue Sampling Principle

Ultrasound images (20 MHz) modified from Mellor et al. 2004 (The Breast Journal, 2004;10:496-503)

Dr. HN Mayrovitz
TDC Measurement Sites

Each site measured to an effective depth of 2.5 mm
Forearm site measured to effective depths of 0.5, 1.5, 2.5 and 5.0 mm
Pre-Surgery Measurement Results
Pre-Surgery by Site – TDC values

No significant differences between sides

- TDC (2.5 mm)

N = 76
8/26/11

Data as of 06/05/2011

- Cancer Side
 - 21.8 ± 3.3
 - Biceps
 - 34.8 ± 7.0
 - Axilla
 - 24.8 ± 3.5
 - Forearm

- Healthy Side
 - 26.7 ± 5.1
 - Thorax
 - 34.7 ± 8.0
 - Axilla
 - 21.8 ± 3.7
 - Biceps
 - 24.8 ± 3.7
 - Forearm

Dr. HN Mayrovitz
Pre-Surgery by Site – All Parameters

No significant differences between sides

- TDC (2.5 mm)
- BIOZ
- VOLUME

N = 76
8/26/11

Arm Volumes (ml)

<table>
<thead>
<tr>
<th>Site</th>
<th>Cancer Side</th>
<th>Healthy Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forearm</td>
<td>2273 ± 657</td>
<td>2292 ± 652</td>
</tr>
<tr>
<td>Biceps</td>
<td>26.4 ± 4.6</td>
<td>26.7 ± 5.1</td>
</tr>
<tr>
<td>Thorax</td>
<td>34.8 ± 7.0</td>
<td>34.7 ± 8.0</td>
</tr>
</tbody>
</table>

Z = 293 ± 43
Z = 292 ± 43

No significant differences between sides

Dr. HN Mayrovitz
Significant differences among all depths

Dr. HN Mayrovitz
Forearm TDC by Depth: Pre-Surgery

Significant differences among all depths

BUT: No difference between sides at any depth

Effective Measurement Depth (mm)

N=76

Dr. HN Mayrovitz
Sequential: Pre-Surgery → One Year Post

At-Risk/Control Ratio

N=35

Error bars excluded for clarity

Dr. HN Mayrovitz
Changes in Risk/Control → 1.0 yr

Thorax TDC is the only significant increase compared to pre-surgery

Ratio (Risk/Control)

N=35

Dr. HN Mayrovitz
Possible Thresholds via Risk/Control Ratio

What change over time might constitute evidence for ‘pre-clinical’ lymphedema?

Pre-Surgery Ratio (Risk/Control)

- 3.0 SD: 99.87%
- 2.5 SD: 99.38%
- 2.0 SD: 97.71%
- 1.0 SD: 99.87%

N=76
- Forearm -TDC
- Biceps-TDC
- Thorax-TDC
- Axilla-TDC
- Volume
- Bioz

Dr. HN Mayrovitz
TDC Thresholds (Risk/Control)

2.5 mm Effective Measurement Depth (N=76)

<table>
<thead>
<tr>
<th>Threshold Level</th>
<th>Forearm</th>
<th>Thorax</th>
<th>Biceps</th>
<th>Axilla</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SD (97.7%)</td>
<td>1.20</td>
<td>1.21</td>
<td>1.29</td>
<td>1.43</td>
</tr>
<tr>
<td>2.5 SD (99.38%)</td>
<td>1.24</td>
<td>1.26</td>
<td>1.36</td>
<td>1.53</td>
</tr>
<tr>
<td>3.0 SD (99.87%)</td>
<td>1.29</td>
<td>1.32</td>
<td>1.43</td>
<td>1.63</td>
</tr>
</tbody>
</table>

Dr. HN Mayrovitz
Threshold Comparison (Risk/Control)

<table>
<thead>
<tr>
<th>Threshold Level</th>
<th>Forearm TDC</th>
<th>Thorax TDC</th>
<th>Volume</th>
<th>Bioz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SD (97.7%)</td>
<td>1.20</td>
<td>1.21</td>
<td>1.09</td>
<td>1.10</td>
</tr>
<tr>
<td>2.5 SD (99.38%)</td>
<td>1.24</td>
<td>1.26</td>
<td>1.12</td>
<td>1.13</td>
</tr>
<tr>
<td>3.0 SD (99.87%)</td>
<td>1.29</td>
<td>1.32</td>
<td>1.14</td>
<td>1.16</td>
</tr>
</tbody>
</table>

Dr. HN Mayrovitz
Exceeding Threshold 1-Year Post-surgery

% of patients

- **Volume**: 8/35 (22.9%)
- **Forearm**: 4/35 (11.4%)
- **Biceps**: 2/35 (5.7%)

N = 35

Dr. HN Mayrovitz
Main Points Summary

• In 76 newly diagnosed breast cancer patients, biophysical measures showed no difference between cancer and control sides prior to surgery.

• In 35 pts followed for one year a significant increase was found only in TDC of at-risk thorax suggesting early increased thorax tissue water.

• Exploratory lymphedema thresholds based on pre-surgery variances indicate thorax thresholds are exceeded in 5.7% -22.9% of patients by 1 year depending on the threshold criteria employed.
Main Point Conclusions

• Pre-surgery side-to-side similarities suggest that if pre-surgery data are unavailable, differentials measured later can still be diagnostically useful.

• Tracking of thorax tissue water changes via TDC measurements emerges as a potentially new and useful parameter to detect incipient lymphedema.

• The validity of the exploratory lymphedema thresholds is not yet established but depends on method, TDC site and its measurement depth.
This presentation is available at www.lymphedema-research.org in Flash and PDF formats.

My sincere thanks to Dr. Tapani Lahtinen for his heroic efforts on my behalf!