Utility of Local Tissue Water Measurements to Assess Breast Cancer Treatment-Related Lymphedema

HN Mayrovitz College of Medical Sciences, NSU, Ft. Lauderdale FL

RESULTS (cont)

- **Main Method Used in this Study**
 Tissue Water via Dielectric Constant

- **Complications**
 - Fluid & Protein
 - Excess - Lymphatics
 - Vasodilation - Increased filtration - Tissue warming
 - Microphages
 - Fibrosis
 - Bacterial/Fungal Infections

- **Postmastectomy Lymphedema**
 - Develops secondary to surgery and/or radiation therapy
 - Occurs in 20-40% of persons treated for breast cancer
 - Onset can be from months to years after surgery
 - If untreated, gets progressively worse

- **Tissue Property Changes**
 - Tonometer
 - TissuPress®
 - Penetration Indentation Recovery
 - Local Tissue Water

- **Available Assessment Methods**
 - Limb Volume or Girth Assessments
 - Mainly for Tracking and Documenting

- **MAIN METHOD**
 - Tissue Water via Dielectric Constant
 - Low power 300 MHz
 - Reflected wave depends on total tissue water (free + bound)
 - Calibrated for each probe from 1 - 80

- **Depth Variation**
 - Dielectric constant of about 80

- **Objective**
 - Detect and document lymphedema
 - For bilateral cases (or with absolute values):
 - Arm TDC ratio > 1.2

- **Results**
 - Arm TDC ratio > 1.2

- **Conclusions**
 - This local tissue water method can rapidly detect and document lymphedema presence
 - May also have utility for early detection

- **Criteria for such early detection**
 - As of now for the limited data set:
 - For at-risk unilateral cases:
 - Arm TDC ratio > 1.2
 - For bilateral cases (or with absolute values):
 - Threshold depends on depth
 - Based on ±3 SD of data, estimates are shown in Table 1

Table 1. AVERAGE THRESHOLD ABSOLUT VALUES

<table>
<thead>
<tr>
<th>Depth</th>
<th>Tissue Volume (ml)</th>
<th>Tissue Water (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 mm</td>
<td>Arm</td>
<td>Control</td>
</tr>
<tr>
<td>1.5 mm</td>
<td>Arm</td>
<td>Control</td>
</tr>
<tr>
<td>2.5 mm</td>
<td>Arm</td>
<td>Control</td>
</tr>
<tr>
<td>3.0 mm</td>
<td>Arm</td>
<td>Control</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth</th>
<th>Tissue Volume (ml)</th>
<th>Tissue Water (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 mm</td>
<td>Arm</td>
<td>Control</td>
</tr>
<tr>
<td>1.5 mm</td>
<td>Arm</td>
<td>Control</td>
</tr>
<tr>
<td>2.5 mm</td>
<td>Arm</td>
<td>Control</td>
</tr>
<tr>
<td>3.0 mm</td>
<td>Arm</td>
<td>Control</td>
</tr>
</tbody>
</table>

Dr. Mayrovitz welcomes your comments and feedback!

Please contact him via e-mail at: mayrovit@nova.edu