MEASURING SUB-BANDAGE STATIC AND DYNAMIC COMPRESSION PRESSURES
Suzanne Humen Davey, OTR-CT/LANA, Healing Hands of Lymphatics Plus and HN Mayrovitz, PhD, NSU Ft. Lauderdale FL

INTRODUCTION
Many compression bandages and devices are available for treating limb edema, lymphedema and ulcers. Since the pressures achieved by these play a role in their therapeutic usefulness it is instructive to examine some of these pressure features under different conditions. Of particular interest is the pressure measured between the bandage and the limb usually called interface, surface or sub-bandage pressure. When a compression bandage or device is applied to a limb and the limb is at rest, the pressure is called the resting or static pressure. When the limb is moving and its muscles are contracting, then the pressure change is called the dynamic or working pressure. Each has its own specific role in therapeutic processes [1].

The main purpose of this presentation is to provide initial examples and illustrations of some of the clinically relevant features of various bandages and devices under different conditions. The main goal of this work is educational and is not intended as a comparative study of different features among different products. This would require a much larger undertaking for such comparisons to be scientifically meaningful.

METHODS
Pressure Measurement: Accurate and reliable measurement of interface pressures, especially on a limb, requires a sensor that is sufficiently thin and small so that its presence has an acceptably small effect on the true pressure. In the present case we used a thin (1 mm) square (10 mm²) capacitive-based sensor that produces an output voltage related to the integrated pressure over the sensor area. Most, if not all, sensors available for measuring interface pressure are nonlinear, so it is necessary to calibrate and correct for such nonlinearity. Our approach is to calibrate the sensor in situ using a calibrated vascular cuff – sphygmomanometer combination (Figure 1) and then to use a software-based least-squares optimization procedure to relate measured sensor voltage to actual pressure in mmHg.

Protocol: To obtain information under varying conditions, pressure measurements were obtained using the following sequence. The subject (hereafter called Mary) assumed a supine position on a padded therapy table. The sensor was placed on the posterior calf of her left leg and supported by pillows so that the calf was not in contact with the surface and the sensor was then calibrated in situ. A bandage or device was then applied according to manufacturers recommendations by an experienced therapist. Two bandage types (a short stretch and a multilayer bandage system) and two devices (CircAid® Ready Wrap™ and a FarrowWrap™ Classic) were used. These are shown in Figures 2A through 2D with Mary supine. After application, the pressure that was measured (suture-resting pressure) was then assisted to a sitting position with her legs hanging over the edge of the table. The pressure was again measured (seated-hanging pressure). She then performed a toe up maneuver, in which she raised up on her toes 10 times in 20 seconds. After a brief rest, and while standing, Mary performed a heel-up maneuver, in which she raised up on her toes 10 times in 20 seconds. She then sat down in an armless chair with feet flat on the floor and pressure was measured (seated-rest pressure, Figure 3B). She then performed a toe-up maneuver sequence, followed by a heel-up sequence as described above. Mary then stood up, while standing still, another standing rest pressure was obtained. Finally she returned to a supine position and the supine-rest pressure measurement was repeated. The same sequence was used for each bandage or device.

PROCESSES AND EXAMPLES OF STATIC AND DYNAMIC PRESSURE FEATURES

RESULTS AND DISCUSSION
Compression therapy is one of the most important aspects for treating edema, lymphedema and certain limb ulcers. We know that it works, but there are many details of the mechanisms and processes that are not yet fully understood. This means that it is not always clear as to which bandage or device features are optimum for a given condition or patient. We believe that by more expansive studies along the basic lines outlined in this single case report, some of these clinically relevant informational gaps can at least be partially filled.


Dr. Mayrovitz may be contacted at: mayrovit@nova.edu