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Wave-speed limitation on expiratory 
flow - a unifying concept 

STANLEY V. DAWSON AND EDWARD A. ELLIOTT 
Department of Physiology, Harvard School of Public Health, Boston, Massachusetts 02115 

DAWSON, STANLEY V., AND EDWARD A. ELLIOTT. Wave- 
speed limitation on expiratory flow -a unifying concept. J. 
Appl. Physiol. : Respirat. Environ. Exercise Physiol. 43(S): 
498-515, 1977. -The mechanism limiting forced expiratory 
flow is explained on the basis that a local flow velocity reaches 
the local speed of wave propagation at a point, called the choke 
point, in intrathoracic airways. This theoretical approach to 
the “waterfall effect” leads to selection of the analogy of con- 
stricted open-channel flow to apply to the elastic network of 
airway tubes. Quantitative results are derived for the case of 
negligible friction by use of the Bernoulli principle. Shapes 
predicted for the maximum-flow static recoil curves depend 
only upon the nature of the pressure-area curve at the choke 
point in the case of negligible friction; and the magnitude of 
the critical rate of flow depends on reference values of cross- 
sectional area and elastic modulus at the choke point, on gas 
density, and on the static recoil pressure. The present theoreti- 
cal results are used to interpret previous experiments, but 
quantitative applicability is limited because of frictional ef- 
fects and lack of knowledge of choke point conditions. 

aerodynamics of lungs; choke point; collapsible tubes; elastic 
tubes; flow limitation; flow-volume curves; isovolume-pres- 
sure-flow curves; lung airways; maximum flow; waterfall ef- 
fect 

THE MAXIMUM EXPIRATORY FLOW-VOLUME (MEFV) 
curve is a display of the maximum expiratory flow rate 
over the whole range of vital capacity (VC) of the lung. 
Such curves are largely reproducible in any given sub- 
ject because, beyond a critical level of effort, the flow is 
independent of pleural pressure, which is a measure of 
the effort furnished by the chest wall (4). This independ- 
ence of effort, taken together with the observed depend- 
ence of maximum flow on lung volume, strongly sug- 
gests that there is within the lung a mechanism which 
limits the expiratory flow. The present work is a theo- 
retical study of this mechanism and how it produces the 
observed MEFV curves. 

The earliest mathematical approach to the explana- 
tion of expiratory flow limitation was that of Fry (7). His 
model was based on the differential equation of flow in a 
uniform elastic tube situated in a pressure environment 
like that of the pleural pressure of the lung. According 
to the predictions of this model, the flow as a function of 
pleural pressure would have a maximum and not a 
plateau. In later work Weibel’s symmetrically branch- 
ing model of lung airways was used with various as- 
sumptions about airway elasticity and friction laws in 
order to predict maximum flow (8, 20, 30). Neither that 

work nor a related analysis (2) offered an adequate 
explanation of the observed plateau of flow at pleural 
pressures above the critical value. 

The mechanism of expiratory flow limitation has also 
been described intuitively on the basis of obsarvation of 
lung airways during forced expiration. Experimental 
observations have shown that under conditions of flow 
limitation the airway approaching the thoracic outlet is 
highly compressed because the pleural pressure gener- 
ated by effort of the chest wall greatly exceeds the 
hydrostatic pressure within the trachea. Pride et al. 
(33), referring to the earlier work of Permutt and co- 
workers on hemodynamics of collapsible vessels, called 
attention to the compressed airway. They postulated 
that the effect occurring there was like that of a water- 
fall, in which reductions of downstream water level 
below a certain critical level do not influence the flow. 
In the situation of lung airways, the increase of pleural 
pressure (effort) above the critical value translates into 
a decrease of transmural pressure below a critical value 
at the thoracic outlet. This value of transmural pressure 
is the analog of the level downstream of the waterfall. 
The analysis proceeded in terms of “resistances,” de- 
fined as the ratio of pressure drop to flow rate, both 
upstream and downstream from an especially collapsi- 
ble segment of airway. Mead et al. (27), on the other 
hand, in considering the condition of flow limitation at 
any particular lung volume, focused attention on the 
airway upstream from the equal pressure point (EPP), 
at which the pressure within the airway exactly equals 
pleural pressure. They noted that the pressure drop 
from alveolus to EPP is just the static recoil pressure of 
the lung. So this pressure drop is independent of effort, 
as is the flow at limitation. Therefore the ratio of this 
pressure drop to flow has a value which depends on lung 
volume but is independent of effort. They considered 
this ratio to be an “upstream resistance,” which being 
independent of effort implies that the airway geometry 
upstream from the EPP is fixed for all pleural pressures 
higher than the critical value. 

In work outside lung mechanics, it has been predicted 
that flow limitation in elastic tubes would occur at the 
speed at which the fluid in the tube propagates pressure 
waves. These waves, which arise from the interaction of 
radial recoil force of the elastic wall and the axial iner- 
tial force of the fluid, are the pulse waves of blood flow. 
The basic speed of propagation of these pressure waves 
is (Y/p)l12, where Y, as defined mathematically below, is 
the elastic modulus (reciprocal of specific compliance) of 
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the 
. 

flu1 

tube cross section (lumen) and p is the density of 
.d within the tube. In the absence of longitudinal 

tension along a simple tube of circular cross section and 
for small motions from the condition of no distending 
pressure, this is the same wave speed as obtained by 
Young in 1808 (24, see also APPENDIX A and Table 1). In 
a review article on blood flow, R. T. Jones argued that 
the steady force balance, which he computed from the 
Bernoulli principle, would become unstable if attempts 
were made to force fluid through an elastic tube at 
velocities higher than the wave speed (18). The limita- 
tion of steady flow at wave speed was developed for key 
situations in simple elastic tubes by Griffiths in a theory 
of male micturition (ll), which followed from his earl.& 
theory that the maximum flow rate in the female ure- 
thra would have a velocity equal to wave speed at an 
elastic constriction. See also the analysis of Oates (28). 

The wave-speed theory of flow limitation has been 
extensively studied in two fluid mechanical situations: 
the constricted open hydraulic channel, a situation in- 
cluding the waterfall, and the gas nozzle. Both situa- 
tions have a common analysis in terms of velocity and 
also in terms of “pressure condition,” which is taken to 
be the absolute pressure in the gas nozzle and the water 
level in the hydraulic open channel (see Fig. 1, A and 
0). It is this analysis that is extended in the present 
work to elastic tubes, especially lung airways (see Table 
2, which summarizes the various terminologies). 

In both the constricted hydraulic channel and the gas 
nozzle, we consider an upstream reservoir with SUE- 
cient inflow to keep its pressure condition fixed. The 
reduction of pressure condition in a downstream reser- 
voir or other point for controlling pressure downstream 
from some constriction then causes flow to increase up 
to a critical rate such that the speed of wave propagation 
in the flow is reached at the constriction. In Fig. 1, B 
and E, curve 2 corresponds to a condition in which a 
decrease of downstream pressure causes an increase of 
flow, Notice the depression of pressure condition due to 
the increased velocity at the constriction. Curve 3 is the 
critical curve for which the velocity reaches wave speed 
at the constriction, which becomes a point where flow is 
choked or limited. Further decreases in downstream 
pressure, as in curve 4, do not alter the flow rate but 
merely determine the pattern downstream from the 
choke point. A physical explanation of the limitation is 
that disturbances cannot propagate upstream if the ve- 
locity of flow faster than the propagation speed; so the 
downstream changes in level cannot travel upstream 
through the choke point to affect flow rate. The region 
between the choke point and the downstream point of 

TABLE 1. Excised dog airways: 
minimum average wave speed 

--____ 

Trachea 

Y,+ cmH,O 

36 

point will allow the possibility of a smooth transition to the down- 
stream reservoir. Hydraulic jump, as in curue 4 is idealized as being 
perfectly abrupt here, and such idealization permits calculation of a 
close approximation to the height at the actual jump, as shown 

<Y/p>112, cm/s 

6 x lo3 

schematically in D (see also Fig. 8). Transition at the jump is from 
supercritical velocity (or shooting flow) along a portion of curue 6 to 
the subcritical velocity (or quiescent flow) approaching the down- 

Medium bronchus 9 3 x lo3 stream reservoir. 
Small bronchus 1 1 x 10” 

t Y - AaBlaA scaled directly from the maximum compliance 
control in curve 4 adjusts itself so that the velocity is 

point of the Martin and Proctor data (24) as presented in Fry’s (8) above wave speed upstream and below wave speed 
Fig. 4. downstream from an energy-dissipating transition. For 
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500 S. V. DAWSON AND E. A. ELLIOTT 

TABLE 2. Examples of wave-speed concepts 
in one-dimensional flows 

Corn ressible 
P low 

Open-Channel Hy- 
draulics 

Elastic Tube 
Flow 

Propagating wave Sound 
Energy storage Gas compression 

Shallow water 
Water level (gravity) 

Pulse 
Tube recoil 

Wave speed 

Velocity greater than 
wave speed 

Ratio of velocity to 
wave speed 

Discontinuity 

4JF 

Supersonic flow 

Mach no. 

Shock 

egg = dig 

Shooting flow 

Froude no. 

Hydraulic jump 

vm 

Supercritical 
velocity 

Speed ratio (S> 

Elastic jump 

H = height of liquid above bottom of channel; g  = acceleration of gravity. 

example, downstream from the throat of a gas no,zzle a 
shock forms (Fig. 1, A and B), in which velocity de- 
creases abruptly from above to below wave speed (speed 
of sound). The intensity and placement of the shock are 
such as to dissipate steadily by viscosity and heat con- 
duction just that amount of mechanical energy needed 
to adjust to the downstream pressure change without 
affecting the upstream flow pattern. Downstream from 
the constriction in a hydraulic open channel, a hy- 
draulic jump forms (Fig. 1, D and E), in which the 
velocity decrease from above to below wave speed (of 
surface disturbances) is much more gradual than is the 
gas shock, with the necessary energy dissipation occur- 
ring in a quasi-steady structure of eddies. 

The wave-speed theory of flow limitation in elastic 
tubes is introduced in analogy to the constricted open 
channel to demonstrate the “waterfall effect” in a sim- 
ple way that is closely connected to limitation in air- 
ways. Water level is the analog of cross-sectional area, 
each specifying the local velocity for given flow and also 
specifying the effective local pressure, which is the dis- 
tending pressure of the tube. With this choice of pres- 
sure, the static recoil pressure is the analog of the given 
upstream reservoir level. An “elastic jump” is proposed 
as the analog of the hydraulic jump. The constriction in 
the elastic tube, analogous to that of the channel, is 
expected to occur at one of the several local minima of 
cross-sectional area that occur naturally along the air- 
ways. 

The theoretical implications for the airway system 
are quantitatively developed in the frictionless case 
with a qualitative assessment of the effect of friction. 
Available experimental results are then analyzed in 
terms of this theory. 

THEORY 

Basic Aspects 

To obtain a quantitative description of flow limitation 
during forced expiration, assumptions about the struc- 
tural mechanics and fluid mechanics of the airways are 
specified. The airways are considered to act as if they 
are a single airway along which the local value of cross- 
sectional area varies. The value is considered to be 
enormous in the alv,eolus, to proceed to a minimum 
within the thorax, and then to increase as the thoracic 
outlet is approached, as in the Weibel data (36). Figure 2 
is a schematic diagram of the airway system. 

ic region 

Ice’” 

\ 
Airway wall 

Parenchymal- alveolar region 

FIG. 2. Schematic diagram of symmetrical model of airway in 
lung. Flow to right on expiration is positive. 

Another basic assumption of the modeling is that the 
flow is quasi-steady, meaning that no transient inertial 
force need be considered in the mechanics of the flow. 
That no time-dependent effect is necessary to produce 
the flow limitation phenomenon has been shown experi- 
mentally in an isovolume preparation, in which steady 
flow through the airways of an excised lung produced a 
flow limitation closely resembling that of actual forced 
expiration (3). The onset of forced expiration, which is 
effort dependent, is not considered in the present work. 

General elasticity assumption. In accord with experi- 
mental observations on macroscopic airways (13, 23), 
the local value of cross-sectional area of the airway is 
assumed to be statically stable and therefore a strictly 
increasing function of the local distending pressure, 
here defined as hydrostatic pressure (also referred to as 
“side pressure” or simply “pressure”) at a point within 
the airway minus the pleural pressure. Thus if we start 
by ignoring elastic interactions of neighboring sections 
of airway, the cross-sectional area is given by the func- 
tion 

A = A (P - Pp, X) 

which for convenience is turned around and taken in the 
form that the distending pressure is the function 

P - Pp = B(A, X) (1) 
where B(A, X) = distending pressure function, A = area 
of cross section, X = distance along airway, P = local 
value of hydrostatic pressure, and p is the subscript 
indicating the pleural value.] The distending pressure 
function B(A, X) may be considered an elasticity equa- 
tion of state of the airways, defined to include elastic 
support by surrounding parenchyma (26) without the 
need for direct consideration of the peribronchial pres- 
sure, which is the effective external pressure on the 
airway wall. The distending pressure becomes the sim- 
ple transmural pressure only in the situation in which 
the peribronchial pressure is just equal to pleural pres- 
sure. 

The Local head. A very useful quantity in analyzing 
flows in tube systems, such as that in airways, is the 
head (also referred to as “total pressure” or “stagnation 
pressure”). 

l See section on SYMBOLS at end of main text. 
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head=P+yU2 

where gravity is neglected in the gas flow, and where U 
= the average velocity in a local cross section, q = 
momentum correction factor for departure from a blunt 
velocity profile, assumed equal to one in present work, 
and p = density of fluid. According to the Bernoulli 
principle, this head is conserved along the tube in a 
frictionless flow, as long as the compressibility of the 
fluid is negligible, as assumed in the present work. 

In the present problem the pressure and area of the 
airways 
in the 

are related 
expression 

according to Eq. 1. So 
immediately above 

if 
1s 

the pressure 
referred to 

pleural pressure simply by substituting for P according 
to Eq. 1, we get a distending head, which is just the 
head-referred to pleural pressure, a natural reference in 
the present problem 

where J = head minus pleural pressure and F = UA = 
volume-flow rate. For the present assumption of steady 
flow, the volume-flow rate was introduced because it is 
constant along the airway as long as gas compression is 
neglected, as in the present work. The distending head 
cannot increase in the direction of flow, without an 
appropriate input of mechanical energy. 

With B specified as a function of A at each X, as 
discussed in connection with Eq. 1, a solution for A, and 
therefore B, can be determined at any point in the 
airway by using Eq. 2 with any pair of values F and J. 
Such purely algebraic solutions will be developed and 
discussed below for special assumptions on the airway 
elasticity. First, however, it is instructive to derive the 
condition for maximum flow. This critical condition gov- 
erns flow limitation. 

Critical Condition 

Equation 2 is readily solved for F to examine its 
possible range of values as a function of A and X 

l/2 
(J - B)l’“A 

Examples of the area dependence of this function for 
fixed J are shown in Fig. 3B. At each point X along the 
airway this function will have a maximum possible 
value as a function of A. First consider the basic case in 
which the area dependence of B is such that aF/aA = 0 
for fixed J holds at only one value of A. At that value of 
A 

aB 
-l/2 (J - B)--112 __ aA A + (J - B)l12 = 0 

or 

J = B + l/2Y (4) 

where Y = AaB/aA = elastic modulus (reciprocal of 
specific compliance) of the airway cross section. An 
example of this relationship is plotted in Fig. 3A. A key 

40- 
Mwl 

30- 

20- 
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-lO- 

a 
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-30 I I 
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_- - -- 
10 [cmwl 

-20 -10 I’ 10 
0 

-10 
B” 

-20 t 
-30 

t 
-406 

FIG. 3. Relationships among variables at the choke point, con- 
structed on the basis of the Fry form of distending pressure function 
B as in Eq. 7 with Yo = 10 cmH,O, Ao = 2cm2, Au/A0 = 2, and p = 1 
g/l. A: distending pressure (-> and critical value of distending head 
(- -), both as a function of the area ratio, A/Ao (see also Fig. 7A). A 
specified distending head J* at the choke point specifies A* and B*. 
B: physically achievable flow rates for specified head (-) and locus of 
maximum possible flow rate (- -), both as a function of area of the 
cross-section. A* specified in A specifies the maximum flow rate, A* 
(Y*/P)“~, provided it has the lowest value occurring along the tube. 
C: distending head at the choke point versus (actual) critical flow 
rate, a cross plot ofA and B. D: distending head and pressure at the 
choke point, a cross plot from A. 

expression for the maximum possible steady flow rate at 
the point X under these conditions is obtained by substi- 
tuting into Eq. 3 the expression for J - B according to 
Eq. 4, giving 

I? = A(Ylqp) 12 (5) 

tion. This relationship between the maximum possible 
where (Y/qp)l12 

flow rate and the local cross-sectional area is shown in 
Fig. 3B, which shows a strictly increasing function of A 

is the speed of pressure wave propaga- 

in this case. Equations 4 and 5, or equivalently Fig. 3, A 
and B, together give the relationship between head and 
the maximum possible flow rate at each cross section, 
yielding the result of Fig. 3C. Now the minimum value 
in X (along the airway) of this local maximum possible 
flow rate for given head is the prediction of the actuaZ 
maximum steady flow rate, called here the critical flow 
rate2 

F* = A*(y*/w)1/2 = A* U* (6) 

where U* = (Y*/q/,)li2 = wave speed; and where * (read 
star) is the superscript to indicate value at this critical 
(mini-max) point (Ar, Xk), r is the subscript to indicate 
the critical value associated with the actual maximum 
steady flow rate, and k is the subscript to indicate the 

2 Taking account of compressibility of the fluid requires a modi- 
fied Bernoulli principle (32) and a strict mass conservation to derive 
the appropriate critical condition. The resulting modified wave speed 
is as in Eq. A-l. 
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502 S. V. DAWSON AND E. A. ELLIOTT 

critical 
sult for 

(or choke point) location. 
critical (or actual maxim 

According to this re- 
urn) flow rate 7 Eqs. 4 

and 5 hold only at the choke point, where the variables 
all have stars. The critical distending pressure that 
corresponds to Fig. 3, A-C, is of interest in applications -- 
and is plotted in Fig. 30. It should be appreciated from 
the above development that a specified B(A, Xk) com- 
pletely determines the relationship between F* 
for a specified gp (see APPENDIX c, in which the 

and J* 
reverse 

is also demonstrated). 
The derivation of the wave-speed criterion on flow 

limitation in elastic tubes (Eq. 6) depended principally 
on a locally defined head and the elastic recoil of tube 
wall. The implication is that, whatever the friction, 
limitation occurs if flow is increased to such an extent 
that the Bernoulli effect results in a cross-sectional area 
sufficiently small that the velocity at that area is at 
wave speed. 

Equation 5 is essentially equivalent to the theoretical 
slope conditions on flow limitation in the work of Lam- 
bert and Wilson (20) and Pardaens et al. (30), which was 
translated directly into calculus conditions by Clement 
et al. (2) and in a related context by Pederson (31), 
although none of these works considered wave speed 

. explicitly. It can also be shown that the wave-speed 
condition of Eq. 6 is satisfied by Fry’s theoretical predic- 
tion of maximum flow in a uniform tube with frictional 
loss (7). 

Figure 3 provides a graphical basis for describing the 
elastic determinants of the critical flow rate. The B(A) 
curve (Fig. U) that has the smallest area for a given 
distending pressure will tend to result in the lowest flow 
rate (Fig. 3B ). So the choke point will tend to occur at 
such a “constriction.” The magnitude of the curve of 
AY1/2 at that choke point then determines the flow rate 
for a given head (Fig. 3C ). As a simple example of these 
considerations, let a constant Bc be added to B(A, X) 
(30), implying a reduction of area at each distending 
pressure. From Eq. 4 or the construction of Fig. 3 the 
effect at constant J is seen to be a reduction of A* 
equivalent to reducing J by the amount Bc while retain- 
ing the original B(A, X). This example holds whether 
considering one location compared to another as a po- 
tential choke point or considering alteration of the prop- 
erties at a given choke point to determine a new flow 
rate. 

In examining the range of values of F(A, X), as in Eq . 
3 at the beginning of this section, the other important 
case to consider is that of aF/aA = 0 for two values of A. 
This case occurs if AY112 decreases with A to a minimum 
value and then increases for high values of A. This is a 
tube, postulated by J. Mead (personal communication), 
that has a flow limitation at high enough values of A, 
where aF/aA = 0 identifies a local maximum of F as a 
function of A, but becomes too stiff to limit at low values 
of A, at which aF/aA = 0 identifies a local minimum of F 
as a function of A. 

Frictionless Example 

With the critical conditions of the flow in the airway 
established, solutions of Eq. 2 are now obtained to pro- 

vide theoretical predictions of the variation of distend- 
ing pressure along the airway for steady flows. For 
simplicity and to emphasize that ordinary tube friction 
is in no way necessary in the present theory of flow 
limitation, it is assumed that the flow is essentially 
frictionless along the tube system from the alveolus at 

As indicated above, the 
, or no head loss, implies 

least up to 
assumption 

the choke point. 
of frictionless flow 

that at all points upstream from the jump, the distend- 
ing head is equal in value to the static recoil 
the lung 

pressure of 

J = Bv = Pv - Pp 

where the subscript v indicates alveolar value. The 
effect of friction, which is not expected to be great except 
at low lung volumes, is qualitatively assessed as a head 
loss, a reduction of J below Bv. So for example, the 
frictionless prediction of MFSR curves furnishes an up- 
per bound on actual lung curves. 

Fry’s form for area dependence. A form of area de- 
pendence of the distending pressure function, which 
characterizes the airways over a large range of distend- 
ing pressures, is that of Fry (8). This form 
used by Pardaens et al. (30). It is written 

has also 
here so 

been 
as to 

emphasize the reference or resting (B = 0) condition and 
the upper asymptote on area 

B(A/Ao; Au/Ao, Yo> 

-uo.[lMg] [-“,“+\I--;;I C7) 

where u is the subscript indicating the local value of the 
upper asymptote and o is the reference subscript indi- 
cating here the local value for zero distending pressure. 
This relationship has B strictly increasing (“sig- 
moidally”) with A from negative infinity at the lower 
asymptote, A = 0, to positive infinity at the upper 
asymptote, A = Au. The parameters displayed in Eq. 7 
explicitly represent the asymptote Au as well as the 
reference area Ao at the zero-pressure 
elastic modulus there (see Fig. 3A for 

crossing 
a plot of 

and the 
a repre- 

sentative pressure-area relationship). The reference 
state, B = 0, is by definition the state at which (hydro- 
static) pressure in the airway equals pleural pressure. 
In an actual lung, this state is achieved statically for 
intraparenchymal airways only by a special technique, 
such as that of Takishima et al. (35), in which beads are 
used to seal the airways off from the alveolus. Dynami- 
cally the reference state is achieved only at an equal 
pressure point (EPP). 

The present assumptions on the parameters of the 
distending pressure function are 1) Ao, the reference 
area decreases along the airway from its very large 
alveolar value to a minimum value (Aok) and increases 
from this minimum to the thoracic outlet; 2) Yo, the 
reference value of elastic modulus is constant along the 
airway (Yo = Yok); and 3 ) Au/Ao, the ratio of the upper 
asymptotic area to the reference area is constant along 
the airway. 

Variables used in plots. For these assumptions the 
results of solving Eq. 2 are shown in Fig. 4, where the 
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F*/Fok 

6 

.I .2 .3 .4 .5 .6 .7 .8 .9 .9 .8 7 .6 .5 

FIG. 4. Frictionless results with Fry form for area dependence at 
distending pressure function. A: distending pressure ratio as a func- 
tion of location, which is expressed as a reciprocal of reference area. 
Alveolar region is at the left-hand edge of the plot, and the choke 
point of the full airway system is at the vertical line, Aok/Ao = 1. 
Elastic jumps are represented as the vertical dotted lines to the right 
of choke point, where Aok/Ao is decreasing in the direction of flow. 
Arrows indicate direction of transition from upstream to down- 
stream branch of solution curve. Dashed portions of solution curves 

parameters and variables are expressed as ratios in 
order to enhance the versatility of each plot. New defini- 
tions are S = U/(Y/gp)“” = ratio of local velocity to the 
local wave speed at a cross section; Fo = Ao(Yo/qp)li2 = 
flow rate that would occur if the velocity at that location 
were equal to the wave speed of the reference cross 
section there; and where d is the subscript indicating 
the downstream location at the thoracic outlet. The 
dimensionless variable S is the analog of better known 
ratios of flow velocity to speed of propagation of pressure 
disturbances: the Froude number for flow velocity rela- 
tive to speed of surface waves in shallow water and the 
Mach number for flow velocity relative to speed of sound 
waves in a compressible fluid. Note that S* = 1. An 
alternate form for this variable is 

S = F/{A(Ylqp) 112} 

emphasizing the reciprocal relationship to the variable 
AY’12. 

The construction of Fig. 4A is described in APPENDIX 

B. In Fig. 4A distending pressure (divided by the con- 
stant elastic modulus Yo) is plotted against the variable 
Aok/Ao which indicates location in the following man- 
ner: the decrease of Ao from its essentially infinite value 
near the alveolus to its minimum value Aok corre- 
sponds to the increase of Aok/Ao from zero to unity 
shown in the left-hand portion of the plot. The increase 
of Ao from its minimum value to the assumed value 
(2Aok) at the thoracic outlet downstream corresponds to 
the decrease of Aok/Ao to one-half in the right-h .and 
portion of the plot. The use of the symbol Aok for the 

0 2 3 4 8 Bv/Yo 

are physically unrealizable in the present context. B: downstream 
distending pressure ratio as a function of speed parameter for the 
conditions ofA. C: velocity ratio, local flow velocity divided by local 
wave speed as a function of location, plotted as in A. Note that the 
only realizable branch with S > 1 is CD, which provides a smooth 
transition from velocities less than to velocities greater than wave 
speed. D: speed parameter as a function of static recoil pressure ratio 
for specified values of Auk/Aok. 

minimum value of Ao is only justified by the fact that 
for the present simple assumptions on elasticity and the 
assumption of frictionless flow, the choke point is lo- 
cated at the minimum of the reference area function 
Ao(X). Figure 4C is a companion plot showing the ratio 
of flow velocity to wave speed and is constructed from 
cross-sectional areas implied in Fig. 4A. In both these 
plots the horizontal scale is readily transformed to X for 
a given Ao(X). Only when Ao-Aok is proportional to 1 X 
- Xk j is the shape of the plots shown the same as the 
plots against X. In the more typical circumstance of a 
smooth variation of reference area, (Ao - Aok) is pro- 
portional to (X - Xk)2, and the slope of the curves of B 
(or A) as a function of X remains finite, even at the 
choke point (see also Fig. 1OB). 

Reszdting solutions. As in the compressible-flow and 
open-channel analogies, the plot of B/Ye for a fixed 
upstream value, Bv, shows a difference in character 
according to whether the downstream value, Bd, is 
above or below a critical value, Brd (see Fig. 4, A and 
B ). If Bd is not below this critical value, then the curves 
corresponding to a decrease of Bd below Bv have in- 
creasing values of flow parameter F/Fok, and therefore 
flow rate. There is an accompanying increase in the 
depth of the dip in the curves showing the variation of 
distending pressure with location. The critical value of 
Bd occurs for flow velocity reaching wave speed at the 
bottom of the dip. No further increase of flow takes place 
for any decrease of Bd below critical, and the flow is 
choked or limited. The effect of further decrease of 
downstream pressure is predicted to require-in viola- 
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tion of the assumption of frictionless flow-a head loss, 
idealized as an “elastic jump” occuring at a single point, 
as shown in APPENDIX B. This jump is from the curve 
which connects the choke point C and the downstream 
point D. All velocities on this curve (except at C) are 
greater than wave speed, as shown in the companion 
Fig. 4C. The jump is to the curve that connects to Bd 
without friction All velocities on this curve are less 
than wave speed. For all negative values of Bd, there is 
only one EPP, and it is located downstream from the 
choke point in the present example. 

In practice, just as in the hydraulic jump, the flow 
downstream from the choke point should be expected to 
be complicated. Wall friction should be of importance in 
the section of high velocity just downstream from the 
choke point. Instead of the idealized abrupt elastic jump 
of Fig. 4A from one frictionless solution to another, an 
extended transition with standing eddies resulting from 
the flow separation is expected to occur. Nevertheless, 
the key feature of the transition, the head loss necessary 
to maintain steady flow, is calculated from the simple 
discontinuity. In analogy to the constricted channel (l), 
the velocity upstream from the jump is assumed to be 
essentially stable and steady,” as long as the down- 
stream pressure is not so low as to cause the jump to 
reach the exit of the elastic tube system. For lower 
downstream pressures, the question of a mechanism to 
dissipate sufficient head arises, and it is probable that a 
highly unsteady flow is required (12). Unsteady limited 
flows are readily observed in elastic tubes (7). 

Figure 4B shows a plot of the variation of Bd with the 
flow ratio F/Fok, as constructed from Fig. 4A. The flow 
increases with decreasing distending pressure Bd up to 
the limiting flow plateau. The curve is for the fixed 
upstream (alveolar) distending pressure or static recoil. 
So it is essentially a prediction of a family of isovolume- 
pressure-flow (IVPF) curves of the excised lung, for 
which Pd = 0 so that Pp = -Bd. For the lung in situ the 
pressure drop Pd of the extrathoracic airway must be 
added to the negative of Bd to obtain pleural pressure: 
PP = Pd - Bd, by virtue of Eq. 1. 

In Fig. 40 each curve is the plot of critical value of 
flow parameter F*/Fok against the static recoil condi- 
tion upstream, Bv/Yok, for the specified value of Au/Ao. 
Separate curves like those of Fig. 3, A and B , were 
required for each value of Au/Ao. The result gives that 
part of the maximum-flow static recoil (MFSR) curve 
which is at high enough lung volumes that the flow can 
be considered frictionless and over a narrow enough 
range of lung volumes that the parameters, Yok and 
Auk/Aok, can be considered constant. It is important to 
~___- 

3 R. T. Jones (18) argued that velocities above wave speed would 
necessarily be unstable in a uniform tube, and Pardaens et al. (3O), 
without using the concept of wave speed, argued similarly to arrive 
at a maximum flow rate through the tube system. These arguments, 
however, do not establish that flows with velocities greater than 
wave speeds are necessarily unstable, even in uniform tubes, be- 
cause they fail to take account of the disappearance of the disturb- 
ance by wave propagation along the tube, Steady flows with veloci- 
ties greater than wave speed are readily produced in uniform open 
channels (1, 32), and a likely interpretation of Griffiths’ experiments 
is that flow velocities greater than the wave speed were readily 
obtained in the uniform rubber tube (11). 
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note that this result does not depend on any airway 
property except at the choke point, in contrast to the 
local variations of Fig. 4, A and C, which do depend on 
the assumptions of constancy of Au/A0 and of Yo along 
the airways. In the case of nonnegligible friction, the 
predicted MFSR curve does depend upon the properties 
along the airway. The general qualitative effect of fric- 
tion is to shift points on the frictionless MFSR curve to 
the right by the amount of head loss from alveolus to 
choke point, an amount that depends on flow rate (see 
also the section on qualitative effect of friction). 

Figure 40 implies that the critical flow rate F* is 
proportional to Aok and to p-l’” and increases with the 
static recoil Bv. The dependence on Yok is less obvious 
because that physical quantity is in the scaling of both 
coordinate axes. To unravel this dependence numeri- 
cally requires further computation, but the direction of 
the change in critical flow rate with Yok can be argued 
physically. Consider a stiffening of the airway wall in 
the sense of increasing Yok in the two possible inflation 
conditions: positive values and negative values of B*. In 
both conditions the stiffening tends to change the area 
A* toward the reference state Aok. For positive distend- 
ing pressures this increased stiffness results in a de- 
creased area A* and a decreased critical rate of flow. For 
negative distending pressures the increased stiffness 
results in an increased area A* and an increased critical 
rate of flow. The overall result that an increase of Yok 
has on the MFSR curve is decreased slopes at all values 
of recoil pressure. 

Further Aspects of the Theory 

The above theoretical results provide a useful context 
for further developments. The frictionless analysis is 
readily extended to include other forms of area depend- 
ence of distending pressure. The power-law form, which 
is especially instructive, is developed below. The case of 
a discontinuous shift of location of choke point is ex- 
plained. Then, before considering experiments on real 
lungs, there is discussion of important ways in which 
the present modelling assumptions require modifica- 
tion: consideration of friction, of longitudinal tension, 
and of unequal branchings. 

Power-law form for area dependence. The assumption 
of power-law form for area dependence of the distending 
pressure function is appropriate over limited ranges of 
that function and permits simple algebraic development 
of critical flow relationships, as in APPENDIX c. The 
assumed power-law form of area dependence at the 
choke point is taken to be the increasing real function 

A = Z[n(B - Bo)]~‘~ (8) 

where the following are real numbers n = an index (2 
- 2), Z = constant of proportionality = Zl-l/n Of APPENDIX 

c, Bo = reference value of pressure, in which o is the 
reference subscript used here for states A = 0 (n > 0) 
and A = m (n < O), in contrast to previous reference 
state, B = 0. The constant of proportionality, Z, is the 
tube area compliance (reciprocal elastance) for n = 1 
and can be interpreted analogously for n f: 1. For tubes 
such as the larger airways, in which a (real positive) 
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area exists for B = 0, the two fundamental constants Z 
and Bo are expressed in terms of the two reference 
values, Ao, Yo, in Eqs. C-6 and C-7. 

The area dependence of Eq. 8 implies a specific power- 
law relationship between head and critical rate of flow 

F* = W[m(J* - Bok)]l’m (9) 

where 

m = 2n/(2 + n) 5 2 

W = (q~)-~‘” Zk 

and in terms of the case of reference state, B = 0 /’ 
Bok/-‘-” -- I 

w= hd 
-l/2 Yak-l/n Aok 

I 

(11) 

I 1 I J 
-10 -5 0 5 

[cmw] 
lo Bv 0 20 40 60 8O%Vc 

The dependence of critical flow rate on density, head, 
reference pressure, and the constant Z is clear from Eqs. 
9 and 10. Similarly, the use of the parameterization 
with Aok and Yok shows directly the dependence of 
critical flow rate on Aok. The dependence on Yok is 
obtained by differentiation, and it is found, as can be 
shown quite generally for that form of parameteriza- 
tion, that F* increases with Yok for B < 0 but decreases 
for B > 0. 

An MEFV curve that corresponds in turn to the above 
MFSR relationship is obtained by applying a standard 
pressure-volume curve to the MFSR curve. The result is 
as shown in Fig. 5C. It is emphasized that these predic- 
tions of MFSR and MEFV curves are based on the 

Not only does Eq. 8 imply Eq. 9 but the reverse is also 

assumption that Yok is independent of lung volume, an 

true. Examples of this correspondence are shown in Fig. 
9, A and B. To explore this correspondence further a 

assumption made in effect by Pardaens et al. in their 

particular simple frictionless example is chosen so that 
Eq. 9 becomes the MFSR relation. It is assumed in Eq. 8 

predictions which included frictional effects and were 

that for negative values of Bk, an inverse proportional- 

based on the Fry form of area dependence (30). See the 

ity holds, n = - 1, and for positive values of Bk the 
square law holds, n = 

DISCUSSION below for the effect that a more realistic 

2. These two portions of the area 

assumption about dependence of Yok on lung volume 

dependence are assumed to join smoothly. The corre- 
sponding powers for the MFSR relationship are m = - 2, 

has on the MFSR and MEFV curves. 

m = 1. For representative values of Aok and Yok these 
two relationships are shown in the solid curves of Fig. 5, 
A and B. These are constructed from Fig. 9, in which it 

The power-law assumption leads to a simple expres- 

may be observed that the general character of both area 
dependence and MFSR curve is similar except that as n 

sion, Eq. C-13, for the ratio of reference cross-sectional 

ranges upward from -2 to 00, m ranges upward from ---co 
to 2, with the special case, n = m = 0. Limiting points, 

area at the choke point to area at the EPP. A related 

Bok, of corresponding curves are identical. As a particu- 
lar example the area dependence for n = 2, which is 

result of APPENDIX c, which is true for any area depend- 

concave downward, corresponds to an MFSR curve 
which is straight, m = 1. 

FIG. 5. Composite power-law form of area dependence of distend- 
ing pressure curves and corresponding critical flow curves in the 
frictionless case. All curves are for Yo = 10 cmH,O. SoLid curues (-> 
areforAo=2cm2,withn= -1forBk<Oandn=2forBk>O. 
Dashed curves (- -) are for Ao = 2.2 cm2, with n = 1 for Bk < 0 and n 
= 2 for Bk > 0. Circled point indicated break in the power law forms. 

A : cross-sectional area as a function of distending pressure. B: maxi- 
mum possible rate of flow (p = 1 g/l) through locations Xk, as 
function of recoil pressure and C, as a function of percent of VC, 
based on pressure volume curve of Fig. 6C. Actual critical flow rate 
is the lower of the two maximum possible rates and the choke point 
location is determined accordingly. At the intersection of dashed and 
solid curves inB and C both points can be considered choke points. In 
A and B the intercepts Bok for A = 0 and F = 0 are indicated in the 
case in which they occur 

low, is that for a sufficiently negative downstream pres- 
sure the cross-sectional area at the EPP is greater than 
or less than that at the EPP according as F*/Fok is 
greater or less than one, or equivalently, according as 
J*/Yok is greater than or less than one-half. 

and C. The location of the choke point corresponds to the 
curve from which flow is actually predicted. 

Discontinuous change of location of the choke point. 
Finding the minimum value of AY”” along the airways, 

Qualitative effect of friction. The primary effect of 
simple wall friction along the airway is to make the 

for each recoil pressure in the frictionless case, gives 
both the value of critical flow rate and the correspond- 

pressure gradient more negative than without friction 

ing location of the choke point. In the power-law situa- 
tion, consider two locations that are local minima of 

so that negative gradients become steeper and positive 

AY112 along the airway. Suppose that one location has a 
distending pressure relationship and an AY112 as in the 
solid curves of Fig. 5, A and B, and the other, as in the 

gradients less steep. Overall pressure drops are thus 

dashed curves. The resulting MFSR curve and MEFV 
curve is then the lowest of the two curves in Fig. 5, B 

increased, resulting in decreased rates of critical flow 
because the function A(Y/sp)l/2 must decrease with de- 
creasing area to produce limitation, and consequently 
the critical flow rate decreases with decreasing distend- 
ing pressure (see Fig. 3). A more physical way of looking 
at this decrease of critical flow with friction is that 
friction causes the local (distending) head at the choke 
point to be reduced below the static recoil value, and 
this reduced local head, which governs the choking, 
implies a reduced critical cross section, resulting in-a ence and is important in experimental applications be- 
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reduced critical flow. Thus in Fig. 4D the effect of fric- 
tion is to shift points of the MFSR curve to the right 
because the actual value of static recoil pressure must 
be greater than the value of the distending head at the 
choke point (see also Eq. 9 for a simple formula for the 
effect). 

Even a small frictional effect modifies somewhat the 
simple frictionless situation in which critical rate of flow 
is determined only by elastic recoil, gas density, and the 
pressure-area relationship at the choke point. For suffi- 
ciently great frictional effect the gas inertia becomes 
negligible in setting the critical rate of flow. In this 
situation the critical rate is set by the condition that the 
frictional-elastic interaction along the airway results in 
an airway that is virtually closed at some point. At that 
point the inertial-elastic interaction, represented by the 
wave-speed criterion, predominates so that the airway 
stays open with an appropriate small area for the criti- 
cal rate of flow. 

Complications at the choke point. The flow approach- 
ing a choke point is converging (decreasing cross sec- 
tion) and will tend to be blunt and therefore rather well 
characterized by the present quasi-one-dimensional 
analysis in the segment upstream from the choke point, 
which segment is the one that matters in setting the 
flow limitation. The difficulty comes in the elastic de- 
scription of the collapsible tube. If there were no elastic 
interaction between successive cross sections along the 
tube, then the theory would be strictly predictive in 
terms of a pressure-area function that is independent of 
variation of area of cross sections that are neighboring 
the choke point. However, the effect of longitudinal 
tension in the tube walls, and its equivalent in the 
attached parenchyma can modify the area dependence 
of the distending pressure function of the tube in two 
ways. One results in a general decrease of critical flow 
rate due to a circumferential contraction through Pois- 
son’s ratio. The other results in a decrease of flow rate as 
effort increases above the critical value because of a 
marked change of effective curvature a2A1i2/aX2 as the 
elastic jump moves downstream from the choke point. 
The flow separation that is most likely to occur in an 
expanding section of airway, for downstream pressures 
that are just critical (Bd = Brd), appears to further 
complicate this effect of longitudinal tension. A prelimi- 
nary theory that predicts the effect of longitudinal ten- 
sion has been developed by T. Wilson (personal commu- 
nication) and by Griffiths (12). 

Heterogeneous pathways. Although the present the- 
ory is developed essentially for a uniformly branching 
model of an airway, equivalent to a single pathway, the 
actual lung airways branch asymmetrically, suggesting 
the need to consider a heterogeneous effect. Even if the 
heterogeneous effect is substantial, as can be expected 
at low lung volumes and in disease, the present concept 
with different choke points in different pathways can be 
used to analyze the problem on the basis of the character 
of the heterogeneity. However, such an analysis is prob- 
ably best done in close connection with experiments and 
is not considered further in the present work. 

APPLICATIONS TO EXPERIMENTS 

In view of the central role proposed for the choke point 
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in elastic tubes, we interpret available experiments that 
relate to choke point considerations. Some of our own 
experiments to locate the choke point and to check the 
critical conditions in isolated airway preparations are 
summarized (5, 6). Then the key problem of locating the 
choke point in actual lungs is pursued on the basis of 
reports of airway conditions during flow limitation. The 
analysis in terms of the present theory is indirect be- 
cause of the absence in these reports of any direct deter- 
mination of choke point or of a sufficient determination 
of airway dimensions and elasticity, from which the 
choke point and critical rate of flow could be decisively 
determined. These reports were of the two studies on 
dog lungs by J. G. Jones et al. (16,1'7), called here Jones 
I and Jones II, and of three studies on dogs and humans 
by Macklem and co-workers (10, 21, 22). An important 
factor in all these analyses is the relationship of lung 
volume to properties at the choke point. 

These experiments on lungs were also reviewed from 
another perspective: to assess the extent to which fric- 
tion could be ignored in predicting the expiratory flow 
limitation. The inclusion of friction is a complicating 
feature of the analysis because it requires consideration 
of airway properties at points upstream from the choke 
point. These properties, which depend strongly upon the 
lung volume, are generally not well known. 

The Choke Point 

Experiments on isolated airways. The basic wave- 
speed condition of flow limitation was tested in a series 
of experiments on isolated “airways” (5, 6). These con- 
trolled experiments illuminated some of the difficulties 
and indicated some useful approaches to locating the 
choke point as well as to evaluating the properties 
there. 

The “airways” tested were a) excised dog tracheas 
and b) a tube with rigid, open semicircular cross sec- 
tion, the open length of which was covered by a rubber 
membrane. In this design to mimic the trachea, the 
rubber avoided the substantial effects of tissue fatigue 
inevitable in the biological preparation (25). The choke 
point was located by tracing the locus of the minimum 
value of distending pressure as the downstream distend- 
ing pressure was reduced below upstream distending 
pressure, which was held constant. At the onset of flow 
limitation, the abrupt downstream turning of the locus 
of the minimum values of B, as the elastic jumps 
formed, was used as the estimate of the location of the 
choke point, at which the cross-sectional area was mea- 
sured. 

An important result was that within about lo%, well 
within experimental uncertainty, the critical condition 
was verified as long as the evaluation of Y was made 
directly at the critical flow condition so as to include the 
effect of longitudinal tension. Evaluation of Y from the 
static pressure-area characteristic without correction 
led to some substantial discrepancies. This finding has 
importance in making accurate theoretical predictions 
of critical flow for the lung as mentioned in the theory 
section above. 

Negative effort dependence. An example of the impor- 
tance of longitudinal tension is offered in an explana- 
tion of the phenomenon of negative effort dependence as 
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an extension of the present theory. In some lungs it is 
found that with increasing effort at a given volume the 
forced expiratory flow rate declines somewhat from a 
peak value, eventually appearing to reach an asymptote 
at very high effort (large pleural pressure, correspond- 
ing to very negative values of Bd). Such negative effort 
dependence has been displayed graphically in isovol- 
ume-pressure-flow curves (9) and is exhibited in flow- 
volume curves of Jones II. 

A qualitative theoretical explanation is based on the 
general idea, expressed independently by J. Mead (per- 
sonal communication) and one author (EE ), of how 
longitudinal tension effects the area dependence of the 
distending pressure function at the choke point. The 
contribution of longitudinal tension to distending pres- 
sure is equal to the negative of the product bf the 
curvature #A112/a X2, a numerical shape factor, and the 
tension. Thus Bk is decreased by positive curvatures, as 
are expected at Xk for critical value of downstream 
pressure, Brd. Then according to Fig. 4A, A* will be 
increased by the positive curvature, and so would 
(AY1/2)* or W ofEq. 9 tend to be increased. But as Bd is 
made more negative than Brd (increased effort), the 
curvature at Xk would be greatly reduced. Hence, any 
increase of (AY112)* or W would be lost, and the result- 
ing critical rate of flow would be reduced as pleural 
pressure is increased somewhat above the critical level 

Indirect evidence on choke points. In a study of limita- 
tion of flow from excised dog lungs, Jones I reports 
distending pressures and cross-sectional areas of air- 
ways that permit some interpretation by the present 
theory. In their Fig. 8, the ratio of cross-sectional area 
to the maximum value is plotted as a function of lung 
volume for three locations -the first near the tracheal 
outlet, the second near the carina, and the third in mid- 
main bronchus- at each of two different driving pres- 
sures (Bd). At the more negative value of Bd, the area 
ratio near the tracheal outlet decreased markedly for 
increasingly negative Bd, consistent with a location 
downstream from the choke point, which location 
passed from being downstream from the elastic jump to 
being upstream as Bd became more negative. The area 
ratio near the carina decreased little for increasingly 
negative Bd, except at low lung volume, at which a 
marked decrease did occur. This situation is interpreted 
as a location upstream from the choke point except for 
the low lung volume at which the choke point shifted its 
location upstream from the carina. The mid-main bron- 
chus did not change area with Bd, indicating a location 
upstream from the choke point at all lung volumes. 

The flow-volume curve for this study was of the type 
with a near plateau of flow for the middle range of lung 
volume, and with a sharp drop in flow at low lunff - 
volumes. This abrupt change of character of the curve is 
consistent with the shift of choke point from a stiffer to a 
less stiff airway as discussed in th .e theore tical section. 
The constancy of flow rate on the plateau is consistent 
with their measurements of area dependence of distend- 
ing press ure being near to a power 1 aw with n = -2 and 
Bok ‘0, according to the present theory and also as 
pointed out in their analysis. 

Another of the results of Jones I, which can be inter- 
preted by the present theory, is the observed variation 

in pressure and head along the airway during forced 
expiration at mid-lung volume (their Fig. 7). An ob- 
served minimum of cross-sectional area along the air- 
way, about 5 cm from the tracheal outlet, corresponded 
to the inflection point of the curve of B(X), as would be 
consistent with the location of a choke point. There was 
also a marked head loss in a zone downstream from this 
point, as would be associated with an elastic jump. 

In Jones II the influence of tracheal properties was 
studied by several interventions: stiffening by insertion 
of rigid tubes and by use of a smooth-muscle constricting 
agent and weakening by digestion with an enzyme. 
Both types of stiffening resulted in higher flow rates at 
greater than mid-lung volumes, reduced flow rates for a 
range of lung volume below midvolumes, and coincident 
flow rates at low lung volumes. The increased flow rates 
for the stiffened tracheas are consistent with the inter- 
pretation that the value of AY112 was increased at the 
choke point. The reduced flow rate is interpreted as 
being due to the shift of the choke point from the stiff 
trachea to a less stiff upstream airway at a higher lung 
volume than normal, thus causing a premature drop 
from the flow plateau. The sudden drop in maximum 
flow both in these lungs with stiffened trachea and in 
normal lungs is interpreted as resulting from marked 
negative effort dependence due to the effect of longitudi- 
nal tension at the upstream choke point. 

Choke point inferred from EPP. The above interpre- 
tations of the plateau-and-drop form of MEFV curve of 
Jones I are consistent with an analysis of the observed 
movement of the EPP. Over the range of lung volumes 
of the flow plateau, the EPP moved from 7 cm upstream 
from the tracheal outlet to 24 cm upstream (Z-mm air- 
ways). The decrease of recoil pressure was accompanied 
by a decrease of distending pressure all along the air- 
way, resulting in the observed movement of EPP up- 
stream from the inferred stationary location of the 
choke point. For the narrow range of lung volumes of 
the sharp drop in flow rate, the EPP moved from 24 cm 
upstream from the tracheal outlet to 19 cm upstream. 
The static recoil pressure decreased only a little and the 
frictional and inertial pressure drop sharply decreased 
with the sharp decrease in flow rate, resulting in the 
observed downstream movement of EPP. At lowest lung 
volumes the EPP again moved upstream. The flow rate 
was no longer changing greatly and the decrease of 
distending pressure again resulted in the upstream 
movement. 

The experiments of Mead and Macklem included dog 
lungs that were studied both in the chest and then after 
excision. Only one MEFV curve (dog 3, excised) had the 
extreme plateau and sharp drop reported in Jones I. 
However, all of the MEFV curves in the excised state 
had sharp bends (knees), and dog 5 (excised) had an 
EPP locus with the broad features reported by Jones I. 
Except for one lung (dog 7) out of six that were re- 
ported, removal from the chest had a substantial effect, 
tending to produce a more distinct bend on the MEFV 
curve and tending to shift the EPP locus upstream by 
several centimeters, generally to the carina, over the 
range of lung volumes of 3040% VC. At those lung 
volumes in intact lungs, the EPP was not more than 6 
cm upstream from the carina, generally corresponding 
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to being no further peripheral than lobar bronchi, which 
are only partly in the parenchyma. At lower lung vol- 
umes there was a pronounced upstream movement of 
EPP for decreasing*lung volume; as was explored fur- 
ther in later work (10). 

The fixed EPP is readily interpreted as being near a 
fixed choke point that is associated with a substantial 
dip in the static value of AY112 as a function of length 
along the airway. This dip then produces a pressure- 
distance curve along the airway which is very steep in 
the vicinity of the choke point, making it possible forthe 
EPP to stay so close to the choke point as to appear fixed 
as lung volume is decreased. Such steep pressure gra- 
dients which include an EPP have been observed in a 
normal human at the carina (F. Hoppin and J. Mead, 
personal communication) and in the isovolume prepara- 
tion with an excised dog lung (J. Friend, personal com- 
munication). The peripheral movement of EPP, as men- 
tioned above in connection with the description of Jones 
I, could then be due either to an extraparenchymal 
location of ch .oke point with a very gentle pressure 
gradient in its vicinity or to progressive upstream move- 
ment of the choke point into the parenchyma as the 
elastic support of the parenchym 
decreasing lung volume. 

.a is decreased with 

Macklem and Mead also give loci of EPP for three 
excised human lungs. In one the EPP remained near the 
carina for 80%-50% VC, while the other two were nearly 
fixed 5-6 cm upstream from the carina for that range of 
lung volume . All three of these fixed extraparenchymal 
loci-of EPP are also expected to be approximate loci of 
the choke point, by the arguments just given for the dog. 
In an early bronchial catheter study in normal human 
subjects, Macklem and Wilson located the EPP over the 
range of lung volume 25-75% in a segmental bronchus. 
Some of the detailed measurements are given for one 
subject (Jrr). The large frictional loss that would ac- 
count for the EPP being so far upstream at that lung 
volume was also directly observed in their Fig. 6. This 
large frictional loss may well be due to a reflex broncho- 
constriction induced by the catheter and possibly acting 
only in that one pathway. Such a constriction is consist- 
ent with later observations of an upstream shift of EPP 
by vagal stimulation in dogs with open chest and of 
downstream shift by vagotomy (10). In any case this 
fixed location of EPP is strongly suggestive of a choke 
point occurring in the vicinity of that EPP. 

Indications of Friction 

Measurements of frictional loss reported in the above 
studies are examined here in order to indicate that the 
frictionless analysis may often apply in making accu- 
rate predictions of critical flow for a wide range of lung 
volumes in dogs but not in humans. The qualitative 
effect of large frictional increases due to bronchocon- 
striction is mentioned. Finally a study of density de- 
pendence of critical flow is mentioned in order to indi- 
cate the importance of friction at low lung volumes in 
humans. 

Measurement of friction loss. The data of Macklem 
and Mead can be used to reconstruct the head (fric- 
tional) loss from alveolus to EPP in dog lungs (21). From 

their Figs. 4 and 10 this head loss is seen to average 
about 1 cmH,O in vivo over the range of lung volumes 
25%-70% VC, but in excised lungs the average rises 
from 1 cmH,O at 25% to 3 cmH,O at 70% VC. In individ- 
ual lungs in vivo, however, reference to their Figs. 5 and 
8 shows a value as high as 2 cmH,O at 25% in one dog 
(no. 8) and values as high as 2 cmH,O at 70% VC in two 
dogs (no. 5 and 6). In these dogs the choke point was 
located by the above interpretation near the fixed EPP 
down to 30% VC; so the head losses to the EPP are also 
to the choke point over most of the range 70% to 30% 
VC. Thus, over this range of lung volumes, the head is 
reduced 1 cmH,O or sometimes 2 cmH,O below the 
static recoil values of 2-8 cmH,O over that range. The 
effect that this amount of head loss has on predictions of 
critical flow rate is just that of an equal loss of elastic 
recoil, shifting points on the MFSR curve to slightly 
higher values of pressure. 

ti 
In the excised lungs of that study there was substan- 

ally more friction. In the study on excised dog lungs by 
Jones I, in which the above interpretation was that the 
EPP was progressing well upstream from the choke 
point for a large range of lung volumes there was re- 
ported a substantial loss of head. At a point just down- 
stream from the apparent choke point the distending 
head was found to be from -5 to +2 cmH,O for the large 
range of lung volumes of the flow plateau (75% to 25% 
EV). In these circumstances the frictionless analysis is 
less likely to be accurate. 

The head loss in humans from alveolus to EPP has 
been reported to be substantial for critical flow. Mack- 
lem and Mead (21) reported in their Fig. 9 a substantial 
loss in three excised human lungs, on the order of 10 
cmH,O over the range 70% to 30% VC. These were cases 
in which the above interpretation was that the EPP was 
near the choke point, so this is an estimate of loss to the 
choke point. Previously, Macklem and Wilson (22) re- 
ported in their Fig. 7 a head loss rising from 4 to 7 
cmH,O to the EPP in the segmental bronchus of cathet- 
erized airways in human subjects for lung volumes from 
25% to 75% VC. Such large head losses would appear to 
make the frictionless analysis inaccurate. 

In a study of normal human subjects by purely nonin- 
vasive methods, Mead et al. reported results consistent 
with the frictionless assumption at high lung volumes 
(27). The maximum effort-independent flow rate and 
static recoil pressure at that lung volume were used to 
compute the area at the EPP. This value of area was 
then found to be close to (but generally greater than) the 
X-ray measurement of tracheal cross section at RV. 
However, as Macklem and Mead pointed out, the re- 
sults are also consistent with a substantially larger 
value of area at the EPP and a substantial head loss to 
the EPP. A complicating factor could be that the refer- 
ence area of the airway in general, and of the airway at 
the EPP in particular, should be expected to increase 
with lung volume for airways receiving evw indirect 
parenchymal support. Nevertheless, an EPP upstream 
from the trachea together with a substantial head loss 
to the EPP would appear to be the most plausible inter- 
pretation, one more in accord with the invasive and 
excised measurements. 

Influence of gas density on the MEFV curve. Another 
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indication of ‘the effect of friction in human lungs at 
moderate-to-high lung volumes is obtained from the 
comparison of the present predictions with the results of 
a hyperbaric study by Wood and Bryan (37). According 
to the predictions of the purely frictionless analysis, the 
critical rate of flow should be exactly proportional to the 
inverse square root of gas density for each value of static 
recoil pressure. But the experimental observation of 
this relationship of flow to density was significantly 
different, more like inverse proportionality to the 0.45 
power, which is a value attributable to a detectable 
frictional effect. At lung volumes below 25% VC the 
inverse proportionality fell markedly, to about the 0.1 
power, indicating a large frictional effect. 

DISCUSSION 

The functional basis of the sometimes close relation- 
ship between EPP and choke point is important to ex- 
plore. Except for the case of a large frictional loss, the 
effect of the choke point is to set the maximum flow rate 
in the airway according to the local value of the head. 
The EPP, on the other hand, gives an indication of the 
location of substantial airway narrowing, which is the 
result of the choking that limits flow. The airway prop- 
erties must be balanced so that the airways allow large 
enough values of flow (AY112 large enough) while being 
small enough to develop high local velocities for an 
efficient cough (A small enough) and compliant enough 
to avoid excessive tissue stress (Y small enough). One 
result of this balance, which involves varying degrees of 
parenchymal support of airway walls at different air- 

way locations and at different lung volumes, is the 
MEFV curve. 

The MEFV curve for a power-law form of pressure- 
area function was shown in Fig. 5C. A somewhat simi- 
lar curve, the dotted curve of Fig. 6A, was obtained for 
the same assumptions on the basic parameters, Aok = 
2cmH,O and Yok = lOcmH,O, used with Fig. 40, which 
is based on the Fry form of pressure-area function. More 
realistic assumptions for most lungs would take into 
account the dependence of the choke point properties 
upon lung volume, including the effect of location. An 
increase of elastic support of airways with increase of 
lung volume can be expected at locations that include 
the choke point, which seems likely from our above 
interpretation of experiments to stay near the location 
of the insertion bronchi into the parenchyma in some 
normal humans. The effect that such an increasing 
support with lung volume has on the MEFV curve was 
modeled by assuming that Yok increases linearly (from 
5 to 30 cmH,O) with Bv (from 0 to 20 cmH,O) and that 
Aok = 2 cm2. Then the solid MFSR curve of Fig. 6A was 
constructed from Fig. 40, which represents the predic- 
tion on the basis of a Fry form of pressure-area function. 
The corresponding MEFV curve of Fig. 6B was con- 
structed on the assumption of an averaged pressure- 
volume curve for humans aged 24-30 (27) (Fig. 6C). 

An experimentally obtained MEFV curve for a hu- 
man and one for a dog (22) are also shown in Fig. 6B. At 
lung volumes above the sharp bend at 25% VC, the dog 
curve follows the shape of the solid curve of the theoreti- 
cal model. The human curve is steeper than either the 
dog or theoretical curve in that range of vital capacity, 

FIG. 6. A: MFSR curve constructed from Fig. 20, 

(cmw) 2o Bv O 60 

; 
I  Au/A0 = 2, Aok = 2 cm? (-) Yok increasing with 

80 YVC loo 
lung volume, (0 . . a) Yok = 10 cmH,O. B: MEFV 

0 curves: (--) (. . . a> constructed from A and C, (- - - -> 
observed human curves, ( - l -> observed dog curve 
(22). C: average pressure-volume curve for ages 24- 
30 (27). Horizontal scale was on the basis of a ratio 
RV/TLC equal to one-fifth. 

0 lb 20 
(cm4 Bv 
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as would be explained by effect of friction in humans, as 
discussed above, and to the reduction of Aok with lung 
volume due to the more peripheral human choke point 
losing support. At low lung volumes the theoretical 
predictions of flow rate are far too high. The change of 
shape of the dog curve below 25% VC is interpreted as 
indicating an abrupt peripheral movement of choke 
point, as well as substantial frictional effect. In humans 
the abrupt peripheral movement of choke point, indi- 
cated by density dependence above, is not evident in the 
MEFVcurve. fiow&er, the observed low rates of flow 
near 0% VC, a few tenths of a liter per second, are not 
consistent with the lowest values of AY112 that central 
airways with some cartilage support can achieve. Thus 
independently of the effect of friction, the inference is 
that-the choke point must be quite peripheral and that 
the aggregate cross-sectional area of choke points in 
airways not effectively closed is of the order of 1 cm? 
Such peripheral locations of choke points at very low 
lung volumes would be consistent with the very periph- 

volumes (14), with the suggestion that the effective 
closure of airways at low lung volumes is due to flow 
limitation (15,34), and with the observation of histologi- 
cal closure at slightly negative recoil pressures (14). 

In addition to these particular shapes of MEFV curves 
for man and dog, there are well known variants that 
may be explained by variations on the above reasoning. 

eral location of EPP’s observed in dogs at low lung 

that have been used to explain the observations. Al- 
though the present work leans heavily on the wealth of 
knowledge of flow limitation of better known types in 
fluid mechanics, there may be some principles of critical 
flow in collapsible tubes that are of interest in general 
fluid mechanical theory as -well. 

sult of the critical phenomenon of flow velocity being 
limited by wave speed. In principle, there need be no 
compression (B < 0) in the system at flow limitation. 

One of the main clarifications offered for the intuitive 
models is that the “waterfall effect” (33) can be inter- 
preted to be of the type of flow limitation that occurs at a 

The condition that the choke point is not compressed (B* 

constriction in an open channel. The present critical 
condition leads to a precisely defined choke point, criti- 

> 0) is that the flow parameter F*/Fok is greater than 

cal area, and critical distending pressure, implying a 
precisely defined critical rate of flow, all of which are set 

one; or equivalently the distending head at the choke 

by upstream conditions as well as the local airway 
properties at the choke point. Whether there is friction 

point must be greater than Yak/2, as developed in AP- 

or not, the critical rate of flow is established for flow 
velocity reaching wave speed at the choke point, and a 
specific, widely applicable mechanism to maintain 
steady flow limitation is proposed: an elastic jump. The 
compressed segment of airway, as interpreted by the 
present theory, is seen as a functionally important re- . 

In humans these variants include curves that are less 
steep in some young normal adults and curves that 
become so steep as to become concave upward even at 
high lung volumes in older normal adults (27). In dogs 
there is a considerable variety of curves, some of which 
have no distinct bend (22), and induced bronchoconstric- 
tion can produce an MEFV curve that is entirely con- 
cave upward, as in Jones II. 

Some of the experimental results interpreted in the 
previous section may be rather extreme versions of cir- 
cumstances in the normal lung. One instance already 

PENDIX C. 

The present theory predicts the part of the geometry 
of the airways that is unchanged with increased effort 
for a fixed elastic recoil pressure. For any increase of 
effort above the critical value, the geometry upstream 
from the elastic jump does not change because, except 
for effects of longitudinal tension, the disturbance of the 
increase cannot propagate upstream through the region 
of flow having a velocity greater than wave speed. Be- 
cause of the shape of the pressure-distance curves in 
Fig. 4A it is seen that there can be one EPP upstream 

cited is a possible bronchoconstriction which was in- from the jump and one downstream. Thus, according to 
duced by the catheter and which produced a peripheral the present theory, the argument of Mead et al. (27) of 
shift of EPP. Another is that the process of opening the fixed geometry of stream of “the” EPP is necessarily 
chest to expose the lung and, even more, the process of valid only for that EPP which is upstream from the 
excision of the lung would be expected to reduce support jump. Such an EPP is, therefore, within the fixed part of 
for extraparenchymal airways, thus reducing Ao and the geometry. The EPP is a useful experimental and 
Yo and increasing the likelihood that choke points theoretical benchmark, but in reasoning about mecha- 
would occur in these airways. This tendency for more nisms of critical flow the choke point has the great 
central choke points would be reflected in a like ten- theoretical advantage of being intimately involved in 
dency of EPP’s, as observed (10). The observed reduction the mechanism that is producind the limitation and at 
of flows and less steep MEFV curves at high lung vol- the same time must be physically very near a distinctive 
umes would also be consistent with increased friction location, a local minimum of the static curve of area as a 
resulting from reductions of cross-sectional area due to function of distance. 

Apart from the problem of interpreting previous ex- 
periments by the present theory, as discussed above, 

reduced airway support. 

Conclusions one of the main difficulties in applying the present 
theory to any experiment is in locating the choke point 

By appealing to the wave-speed concept of flow limita- and in ascertaining its properties, including dependence 
tion, the present theory is able to offer a comprehensive on lung volume. Even a well-defined minimum in the 
explanatory framework for understanding flow limita- static area as a function of distance becomes an undis- 
tion in forced expiration. This theory offers improved tinguished point in the dynamic curve of pressure as a 
intuition to the work on mathematical modeling and an function of distance. There are also shortcomings of the 
improved precision to the ideas of the intuitive models scope of the present theory because of the need to con- 
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sider quantitatively the effect of friction, of longitudinal parallel with the wall compliance pathway. Thus -&/vaP is to be 

tension, and of asymmetry of the pathways. Overcom- added to aA/AaB to obtain the effective local specific compliance, the 

ing such difficulties may produce a highly predictive reciprocal of which is the local elastic modulus of the airway (tube). 

theory, permitting better interpretation of existing 
The resulting wave speed, which is the square root of the ratio of 

forced expiratory tests and aiding in the design of im- 
elastic modulus to (effective) fluid density is 

proved tests. {q$&f-&)}-1’z={w(~+Jp)}-1’2 

SYMBOLS 

The reason for our departure from some of the standard symbols of 
lung mechanics in this work is to attain clarity efficiently. Sub- 
scripts are indicated as lowercase letters on the line of their govern- 
ing capital, as is now customary in lung mechanics. However, the 
customary descriptive subscript, as in Palv, is replaced by the single 
letter, as in Pv. In a double subscript the first subscript indicates the 
state, the second indicates the location. Thus Prp is the value of 
pleural pressure for the critical conditions. At an actual choke point, 
however, which is critical by definition, the pair of subscripts, r for 
critical state and k for location, is replaced by a star (‘*), as is a 
colorful convention in compressible flow theory. In the case of critical 
flow rate, F* is not only the indicated rate at the choke point, but 
also the actual flow rate for the entire tube system. The subscript o 

where v = local control volume, P = absolute pressure, and y = ratio 
of specific heats. The value of this wave speed is seen to be less than 
both the wave speed in a tube with incompressible fluid and the wave 
speed in a tube with rigid walls. This latter wave speed is just that of 
sound, (~P/P)~‘~, if the velocity profile is blunt (q = 1). Except in very 
large stiff airways Y is sufficiently smaller than yP that the wave 
speed closely approaches (Ylqp) l/2 the value used in the main text; 
but it should be remembered that i is to be evaluated to take account 
gas compression generated by large pleural pressures. 

APPENDIX B 

Critical Condition, Frictionless 
Solutions, and the Jump 

always indicates a reference state, which is the state B = 0, except 
when the o is a subscript on B itself. In that case it indicates one of 

In this appendix, the methods of construction of Fig. 4 are pre- 

the extreme states A = 0 or A = cc. 
sented. The first section is concerned with critical conditions of Fig. 

Two capital symbol changes are made. 1) The distending pressure 
40 and the subsequent sections treat the X dependence of Fig. 4A. 

function is assigned the symbol B for bronchial to avoid any addi- 
CriticaL condition. The condition for which flow is a maximum is 

tional use of qualifiers on P and to reserve P for pressure relative to 
instructively derived by considering the ZocaZ value of distending 

customary references such as atmospheric pressure or the perfect 
head 

vacuum. This assignment leads to the use of Bv for “static recoil 
J - B + l/~qp(F/A)~ (B-1) 

pressure” of the lung. 2) The instantaneous flow in the airway is 
assigned the symbol F, a return to an older notation. For incompres- 

This is the head relative to pleural pressure: the sum of the distend- 

sible expiratory flow, F = -0 where v is the Newtonian symbolism 
ing pressure and the kinetic term. Figure 7A is here interpreted as a 

for the rate of change of thoracic gas volume. In those cases in which 
plot of J(A), from which it is apparent that a minimum of J(A) for 

gas compression is important, the present assignment permits a 
fixed F is a maximum of F for fixed J. So the condition for maximum 

simple distinction to be made between the local flow rate and the 
flow is a J/aA = 0, which implies in Eq. B-l that 

rate of change of lung volume. (aB/aA) - qpF2/A3 = 0 (B-2) 

UNITS 
which is just the wave-speed condition of Eq. 5. As outlined in the 

The units quoted in the text are customary physiological units. 
main text, the minimum along the airway of this maximum F 
defines the critical conditions of actual maximum flow. 

However, the symbols for the physical variables are ultimately 
meant to imply quantities in a self-consistent system of units such as 

For a choke point with an A dependence of B(A, X> as in Fig. 7A, 

the proper cgs system, in which no gravitational factor appears. 
the locus of minima shows that the critical rate of flow is strictly 

Thus, the governing form of units is obtained by converting liters (1 
increasing, not only with A, but also with the local value of distend- 

= lo3 cm3) and centimeters of water (cmH,O = 980 dyn cmm2) to the 
ing head. Identification of values of F/Fok along this locus gives Fig. 

proper cgs units. In some cases, for example in computing the flow 
40. A simple expression for this locus is obtained by substituting in 

parameter F/Fe, the customary physiological units (including p = 
Eq. B-l for F according to the condition of Eq. B-Z. The result is Eq. 
4, 

1.14 g/l BTPS) happen to give directly the correct dimensionless 
magnitude within 2 parts in 1,000. 

FrictionLess soZutions. The continuous curves of Fig. 4A in the 
frictionless case are constructed by solving for B(A, X) in Eq. 2, 

APPENDIX A 

Wave Speed 

where A is the inverse of the function B at each value of X. A plot of 
J/Y0 for fixed values of F/Fe gives the solid curves of Fig. 7A in the 
dimensionless form 

The concept, wave speed, is used in the main text to develop the 
mechanism of flow limitation as straightforwardly as possible. Only 
in a highly idealized dynamical model of an elastic tube would there 
literally be at each point the single wave speed referred to in the 
text. In such a (nondispersive) model, it is unnecessary to distin- 
guish between the speed of traveling waves which propagate disturb- 
ances and the speed of the standing wave. In more realistic models of 
the tube’s dynamic response, a fundamental wave-speed quantity, 
phase velocity (24), depends on frequency components in the wave, 
and such wave travel is termed dispersive. Dispersive waves occur in 
a tube model including such effects as the gas viscosity and com- 
pressibility and the wall inertance and viscance. Longitudinal ten- 
sion in the tube wall produces a dispersive as well as a standing- 
wave effect, and the gas compressibility also produces a standing- 
wave effect. The dispersive effects are not of direct interest in the 
present work because it is ultimately only the standing wave that 
controls the flow limitation according to the present theory. The 
standing-wave effect of longitudinal tension was included in the 
distending pressure function of the main text. The standing-wave 
effect of gas compressibility is now treated. 

J/Y0 = B/Ye + 1/2(F/Fok)2 (Aok/Ao)2 (Ao/A)~ (B-4 

where the definition of Fok was used. Now for the specified head 
ratio, J/Y0 = 1, Eq. B-4 is solved for A/Ao and therefore B/Ye at each 
location, Aok/Ao, and for each specified ratio of flow parameter, F/ 
Fok. The frictionless curves, on the right of Aok/Ao = 1 in Fig. 7A 
are mirror images of the curves on the left. 

The Jump. The condition on the jump from one solution curve to 
another in Fig. 4A is just that the net force on the jump is equal to 
the change of momentum rate through the jump (32). Thus in Fig. 8 
the force, positive to the right, on the fluid in the control volume is 

P,A, + r’ P(x)dA(X) - P,A, + shear 

2 

= (Pp + B,)A, + (Pp + B)dA - (Pp + B,)A, + shear 

I 
2 

= B,A,- B,A,+ BdA + shear 
1 

(B-5) 

The effect of gas compressibility upon the (standing) wave speed 
can be calculated by considering the gas compliance pathway in I 

2 

=- AdB + shear = I, - I, 
1 

 at N
ova S

outheastern U
niversity on July 25, 2012

http://jap.physiology.org/
D

ow
nloaded from

 

http://jap.physiology.org/


512 S. V. DAWSON AND E. A. ELLIOTT 
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FIG. 7. A: distending head vs. area ratio for fixed speed parame- 
ter. Dashed curve is the locus of minima. Dotted Line with negative 
slope connects two states at one of the elastic jumps in Fig. 2A. B: 
force-momentum-rate quantity conserved in the elastic jump, plotted 
against area ratio for fixed value of speed parameter FIFO. Dashed 
curve is locus of minima. Dotted horizontal Line connects the two 
states at one of the elastic jumps in Fig. 2A. Note that the larger 
areas and the smaller areas at the jump are the same in B and A. 

where I = qpU2A = qpF2/A = momentum rate. Because the shear 
from the wall friction is expected to be relatively negligible, the 
quantity which is approximately conserved across the jump is 

qpF’/A + A dB 
I 

where the lower limit of integration is fixed at a convenient value. 

I 
I I- 

-i I - 

,I@ 
F- I 

-4 0 
I 

2 I--- I- ----- -! - I‘---+, I 
-I 22i- 

t f 
xi 1 

i -7 
-- I- 

___---_---_---- -..----Z‘Z:ZT-----1 

FIG. 8. Schematic diagram of force balance for an elastic jump. 
SoZid curves represent streamlines of the idealized flow. Note cZosed 
curves representing standing eddies. Dashed curve (- -> encloses the 
control volume for the force balance on the fluid between the smaller 
cross section (1) at super critical velocity on Zeft and the larger cross 
section (2) at subcritical velocity on right. Inner surface of the tube 
between two sections forms the intervening surface of control vol- 
ume. Small detached arrows represent distributed forces on the 
surfaces shown, pressures being perpendicular to the surface and 
shear forces being tangential to the surface. Dash-dot (- l ) Lines are 
shown for convenience in calculating horizontal component of actual 
forces on the curved surface of the tube. 

This result is just that of Oates (28) but not that of Lambert (19>.4 
As a particular example of this force-balance quantity, the Fry 

form for area dependence, Eq. 7, gives the following U-shaped func- 
tion, plotted in Fig. 7B 

qpF2 Ae + Au - Ao - - ~ 
YoAo2 A Au 

Ao Au - Ao 

For each value of F/Fe and Au/A0 and for each value of this force- 
balance quantity down to the minimum value, the two values of A/ 
Ao across a jump are determined. The direction of the jump is from 
lower to higher value of area, corresponding to a jump in velocity 
from greater than to less than wave speed. This choice ensures that 
head is lost rather than gained across the jump, as is seen in Fig. 7, 
by comparing, for a given F/Fe, the values of head corresponding to 
the smaller and the larger values of A/Ao that are determined by a 
single value of the force-balance quantity. At the minimum value of 
the force-balance quantity the critical condition is attained and the 
two values of area are equal; so the jump becomes of zero height as it 
approaches the choke point. 

The jumps in Fig. 4A were calculated as follows. 1) The critical 
flow conditions establish the portion of the frictionless solution curve 
that has a velocity greater than wave speed (CD in Fig. 4A). Thus for 
given J/Yak, F*/Fok is established, and according to Eq. 2 the area 
ratio A(X)/Ao(X) is established as a function of the location variable, 
Ao(Xj/Aok 

(B-7) 

2) According to the definitions involved 

F* F* Fo F* AoYo”~ F* Ao -=-.-=--- 
Fok Fo Fok Fo AokYok1’2 Fo Aok 

(B-8) 

where the constancy, Yo = Yok, was used to get the last expression 
on the right. Hence, a choice of F*/Fo fixes the location. So according 
to Eq. B-7 the area ratio A/Ao is fixed. 3) This value of A/Ao fixes the 
value of the force-balance quantity on the descending limb (smaller 

4 J. W. Lambert’s statement of elastic jump conditions is just that 
of a hydraulic jump; so it does not include a variation of hydrostatic 
pressure on the face of the jump (19), which variation is included in 
the present elastic jump conditions (28). 
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ensure that A be real for all admissible n it is necessary that B 3 Bo 
according as (a> n s 0. See also the form of&. 8. For n > 0 Bo is the 
value of B at A = 0 and for n < 0 Bo is the value of B at A = 0~. The 
scaling or proportionality constant, Z,, is then simply equal to Y/A” 
for all A (S. Permutt, communicated in review). If the B(A) relation 
to be described by a power law has a (real, positive) intersection with 
the A axis the reference state as defined in connection withEq. 7 can 
be used to replace the parameterization in Z, and Bo by one in Ao and 
Yo, using Eqs. C-4 and C-5 

area) of the curve with the chosen value of F/Fe in Fig. 7B. So the 
value of A/Ao on the ascending limb of the same curve is fixed in 
turn. 4) The reduced value of head ratio for the larger area ratio at 
the jump is calculated from Eq. B-7 or constructed from Fig. 7. With 
this value of head the area ratio for the frictionless flow downstream 
from the jump is directly calculated from Eq. B-7. 

APPENDIX C 

Choke Point Properties and 
Form of Area Dependence 

the Power-Law 
Z, = Yo/Ao” = Z-” Kw 

Bo = -n+Z,Ao” = -Ye/n (C-7) Key mathemat,ical properties of solutions in the vicinity of the 
choke point are develbped. The correspondence between the area Thus, in this important 

analogous to Eq. 7 
special case Eq. C-5 can be written in a form 

dependence of distendi ng pressure at the choke point and the flow 
a function of head at the choke point is demonstrated general 1; 

B/Ye = n-‘[(A/Ao)” - l] (C-8) Then relationships for the power-law form of area dependence are 
derived and used to illustrate the correspondence of Ak(Bk) and 
F*(J*). Other relationships such as that of head and pressure at the 
choke point and that of choke point and EPP are derived. 

Choke point properties from critical flow versus head. In the main 
theory section on critical conditions and again at the beginning of 
APPENDIX B it was shown essentially’ that if the area dependence of 
B(A, X) is specified at the choke point, then so also is the relation- 
ship between the head there and the critical flow rate. In particular 
if friction in airways is negligible, then B(A, Xk) implies a specific 
MFSR relationship. The converse is also true: if maximum flow and 
head at the choke point are specified, then so also is B(Ar, Xk). The 
explicit demonstration of this principle leads to formulas that may be 
of interest in applications. 

First the distending head at the choke point is defined as in Eq. 
B-l 

There is also an obvious further restriction necessary to ensure the 
intersection of B(A) with the A axis 

BosO(->nsO 

The parameterization of the power law based on Ao and Yo is 
developed in the present work because the reference state, B = 0, is 
expected to be near the actual critical value of distending pressure in 
the airways and this parameterization also allows a convenient 
comparison to the Fry form of Eq. 7. In cases of no intercept of B(A) 
on the A axis, the parameterization based on Z, and Bo is valid while 
that based on Ao and Yo is not. The use of Z, and Bo is also very 
convenient for circumstances such as a pure shift of the B(A) curve, 
as occurs for a bronchoconstriction that has the effect of requiring 
the same increase of distending pressure to return to a cross section 
to its original area, no matter what the value of that area. 

Correspondence for the power-law case. A demonstration of how 
the relationship between the head J* at the choke point and the 
critical flow rate F* corresponds to B(A, Xk) is outlined in the power- 
law case. This correspondence could be developed from Eq. C-5 as in 
the construction of Fig. 2, but it is instructive here to use the earlier 
equations of this appendix to go in the opposite direction -from 
F*(J*) to the choke point area dependence. Let critical flow rate be 
assumed as the power-law function of recoil pressure of Eq. 9, where 
W and m are to be determined. Then F* and dF*/dJ* are readily 
evaluated in Eqs. C-2 and C-3 to obtain 

J* = B* + %w(F*/A*)~ c-1 > 

Now F* can be considered simply a function of A*. So by the chain 
rule for differentiation 

F2 * dA* F* 
wA:, dF*+w$ii 

But the quantity in round brackets vanishes by virtue of the critical 
condition of Eq. 6. So the remainder of the equation is solved to get 
A* purely in terms of F* and J* 

(A*)n = wF*(dF”/dJ*) (C-2) A* = (qp)l’“W[m(J* - Bok)]l/n (C-9) 

Then A* is eliminated between this relation and Eq. C-l to give 
B* = J* - ; (J* - Bok) (C-l 0) 

B* = J* - %F*(dJ*/dF*) (C-3) 
Now Eq. C-9 is readily solved for J*, which may then be eliminated 
from Eq. C-10 to obtain Eq. 8 in the main text if the relations ofEqs. 
10a and lob are used. The correspondence is illustrated in Fig. 9. 
From the simple form ofEqs. 8 and 9 a pure shift of A(B) to the right, 
which is an increase of Bo at fixed Z, is seen to be matched by an 
identical shift of F(J*) to the right. An increase in Z, (elastic modu- 
lus for n = 0) at fixed Bo results in a decrease or increase in W, and 
therefore F*, according to whether n is greater or less than zero. 

An instructive example of the power-law form of pressure-area 
function is that of n = 2, corresponding to m = 1, implying a linear 
relationship between head at the choke point and maximum flow 
rate, Eq. 9. For the frictionless case, this relationship has a strong 
resemblance to the Eq. 2 of Pride et al. (33), where W-l would be 
called a “resistance. ” The difference is that our Bok in Eq. C-9 is 
replaced by their critical transmural pressure Ptm’, which in that 
work is in the spirit of our B*, whereas the Ptm’ of their earlier work 
was defined essentially as our Bok (S. Permutt, communicated in 
review). 

Another application of this prediction is in pursuing the reasoning 
of Mead et al. about the shape of the MFSR curve (25). The present 
prediction is that for a fixed choke point with constant properties and 
for frictionless flow there is a variety of possible MFSR curves, for 
example those with shapes made up of cases, n = 1, n = 2 and n = ~0 
in Fig. 8B. The case, n = m, which corresponds to the assumption of a 
fixed EPP in Fig. 5A of Mead et al. is the limiting case of an 
infinitely stiff tube. Their less steep curves for an increasing area of 
EPP are physically impossible in the context of the above assump- 

Equations C-2 and C-3 together provide an explicit’ representation 
B* (A*) from sufficient measurements of J* and F*‘. In using these of 

equations in practice, it is important to keep account of headloss in 
estimating J* from the value of head, for example Bv, at a remote 
location. It is also important to note that in typical cases in which the 
area dependence of B(A, Xk) depends on lung volume (13), the 
function B*(A*) is a locus of points each of which may be on a 
different curve of pressure versus area. In that case Y* is not 
obtained from dB */dA* but directly from Eq. 6. 

Power-law form of area depend&e. In further developing the 
mathematics of critical relationships, it is convenient to adopt a 
power-law form of pressure-area function at the choke point. In 
contrast to certain blood vessels, the central airways are not ex- 
pected to satisfy any one power-law form over a wide range of 
pressures; so several different power- ,law forms will generally be - - 
required to cover a wide range of pressure. The power-law expression 
for B(A, Xk) can be developed by considering that the elastic modu- 
lus at the choke point is of the form 

Y = A dB/dA = Z,A” (C-4) 
where Z, = constant of proportion ality and n = a constant real 
power. Dividing this equation by A and integrating gives 

B(A, X) = B = n-lZ,An + Bo (c-5) 

where Bo is the constant of integration. 
The constants Z, and Bo are readily interpreted in Eq. C-5. To 
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1 
Bk/Yok 

2 

F*/Fok 

I I 
0 1 J*/Yok 2 

0 1 
F*/Fok 2 

I3 

F*/Fok 

X-Xk 

FIG. 10. Relationship of EPP and choke point. A: power-law re- 
sult for ratio of reference area at the choke point to reference area at 
the EPP. B: schematic representation ofpredictions in the neighbor- 
hood of the choke point. Reference-area Ao(X) curve is a (dashed) 
parabola; so the critical solutions Ar(X) are (soLid) straight lines, 
bifurcating at the choke point (X = Xk) into a critical branch of 

FIG. 9. Power-law forms. A: area dependence of distending pres- 
increasing area (S < 1) and a branch with supercritical velocity and 

sure functions. B: MFSR curves. CircZed numbers give the power n. 
decreasing area. Curve 1 attains an EPP downstream from the choke 

Cross-hatching represents bounds on the physically possible regions. 
point only, on the branch with supercritical velocity. Curve 2 has an 

Note that all the curves represent increasing functions. 
EPP upstream from the choke point and may also have on down- 
stream. 

tions. However, if the choke point properties change appropriately, 
so that the reference area of the choke point increases sufficiently 
with decreasing lung volume, then a less steep MFSR would be 
obtained. Much steeper MFSR curves than those implied by the 
above assumptions are predicted for effects associated with decreas- 
ing lung volume. One is the effect of friction and the other is the 
effect of decreasing stiffness for F*/Fok less than unity as explained 
in connection with Fig. 40. 

Head and pressure at choke point. Though not readily measurable 
directly,” the relationship between B* and J* is one that is likely to 
be of interest in experiments, particularly in the case of negligible 
friction, implying that J* approximates Bv. Subtracting Bok from 
both sides of Eq. C-10 gives 

used to obtain the ratio of reference area at the choke point to that at 
the EPP as a function of the flow parameter F*/Fok. In the case of a 
power-law form for area dependence of distending pressure, it is only 
necessary to use Eq. ,9 to evaluate J*, leading to 

(C-13) 

This relationship is plotted in Fig. 1OA. It is seen that the reference 
area at the choke point is always less than the area at the EPP. 

The actual variation of area in the vicinity of the choke point can 
be computed from Eq. 2 for F = F*. A schematic plot is shown in Fig. 
1OB for the power-law case. In the applications a particularly impor- 

B* - Bok = &(J* - Bok) (C-11) 
tant aspect of this plot is the relationship of A* to Ae, which indi- 
cates whether the choke point is upstream or downstream from the 
EPP for the solution curve ICD in Fig. 4A. For any specific area 

In this linear relationship the slope is always positive because n > dependence, and assuming there is negligible friction between choke 
-2. point and EPP 

EPP related to choke point. The EPP is defined as the location at 
which B = 0; so Eq. 2 implies that 

J = B* + %Y* = %qp (F/Ae)2 = %Y* (A*/Ae>2 

J* = l/zq,$ F/Ae)2 (C-12) Or 

where e is the subscript for location of EPP. This equation can be 
But since Y* > 0 

B* = %[ (A*/Ae>2 - l]Y* 

5 From the definition, B* = P* - Prp; so if B* is inferred from 
airway properties and P* is approximated by consideration of head 
loss from choke point to mouth, then Prp can also be predicted to 
compare with measurements. Measurements show Prp to increase 
with lung volume, at least at the higher lung volumes (J. Mead, 
personal communication), while the present predictions of B* also 
increase with lung volume. The resulting implication that P* in- 
creases with lung volume at higher lung volumes is consistent with 
the observed increase of critical flow rate with lung volume, at least 
if a large share of P* is due to head loss in the upper airway with its 
fixed Rohrer constants. 

A*/Ae g 1 e B* s 0 

which is the desired relationship. Also, because of the critical rela- 
tionship 

F* (AYli2)* - = 
Fok AokYok”2 

and because (AY1/2)* is an increasing function of A*, it follows that 

F*/Fok 3 1 a A*/Aok z 1 

with equality for Ae = Aok. Furthermore, directly from Eq. 4, if J* is 
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an increasing function of A*, as must be the case for AkYk1/2 increas- 
ing with Ak, then 

J*,‘Yok z l/2 a A*/Aok 2 1 
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