Journal of Wound, Ostomy and Continence Nursing

Sacral Skin Temperature Assessed by Thermal Imaging: Role of Patient Vascular Attributes

---Manuscript Draft---

<table>
<thead>
<tr>
<th>Manuscript Number:</th>
<th>JWOCN-D-17-00105R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Title:</td>
<td>Sacral Skin Temperature Assessed by Thermal Imaging: Role of Patient Vascular Attributes</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Original Article - Wound</td>
</tr>
<tr>
<td>Section/Category:</td>
<td>Wound</td>
</tr>
<tr>
<td>Keywords:</td>
<td>sacrum; thermal imaging; pressure ulcer; vascular status; skin breakdown</td>
</tr>
<tr>
<td>Corresponding Author:</td>
<td>Harvey N. Mayrovitz, PhD</td>
</tr>
<tr>
<td></td>
<td>Nova Southeastern University</td>
</tr>
<tr>
<td></td>
<td>Ft. Lauderdale, FL UNITED STATES</td>
</tr>
<tr>
<td>Corresponding Author's Institution:</td>
<td>Nova Southeastern University</td>
</tr>
<tr>
<td>First Author:</td>
<td>Harvey Mayrovitz, PhD</td>
</tr>
<tr>
<td>First Author Secondary Information:</td>
<td></td>
</tr>
<tr>
<td>Order of Authors:</td>
<td>Harvey Mayrovitz, PhD</td>
</tr>
<tr>
<td></td>
<td>Paige Spagna, BS</td>
</tr>
<tr>
<td></td>
<td>Martha Taylor, BSN, RN, CWON</td>
</tr>
<tr>
<td>Order of Authors Secondary Information:</td>
<td></td>
</tr>
<tr>
<td>Manuscript Region of Origin:</td>
<td>UNITED STATES</td>
</tr>
</tbody>
</table>

Abstract:

Purpose: We tested the hypothesis that temperature differentials detected by thermal imaging of sacral and remote skin areas of critically ill patients delineate individuals with significant vascular disease and presumably at greater risk for pressure injury development.

Design: Prospective observational cohort

Subjects and Setting: The sample comprised 100 patients (58 men, 42 women) with mean (±SD) ages of 70.4 ± 14.4 and 74.0 ± 14.5 years respectively, who were admitted either to a Cardiovascular Intermediate Care Unit (Cardiovascular- ICU step down unit), or to the Neuro-Surgical/ Critical Care- ICU an ICU in the Southeastern region of the United States.

Methods: A commercially available thermal imaging system was used to obtain simultaneous standard photographic and infrared thermal images (11 x 14 inches) that included the patient's buttocks and remote areas after the patient was off-loaded for about four minutes. Images were processed to determine temperature differences between the sacral region (deemed to have an elevated risk for pressure injury) and a remote region of the skin located at least 10 cm proximal to the sacrum with an average sacrum-to-remote distance of 17.9 ± 3.0 cm that was deemed to be at minimal risk. Prior measurements of healthy subjects showed that sacral skin was on average 0.75°C less than the remote skin site (T = -0.75°C) For the present analysis, a threshold TTH of twice that amount (T = -1.50°C) or more was considered to put a patient at greater than normal risk based on the hypothesis that low sacral temperatures were associated with lowered blood perfusion issues of various clinical conditions. The vascular status of patients who equaled or exceeded this threshold was compared to the other patients.

Results: Thirty-two patients exceeded TTH with an average T of -1.92 ± 0.62oC. In six patients T was greater than +1.50oC with average of +1.98 ± 0.49oC. The remaining 63 patients had an average T of 0.13 ± 0.58oC. Chi-square analysis of the proportions of...
patients exceeding or not exceeding thresholds in relation to their known vascular
disease status revealed no significant difference between these subgroups.
Conclusions: Although infrared thermal screening may provide visually impressive and
potentially useful images in some cases, the use of temperature differentials to detect
patients at particularly high risk related to vascular status is not supported by results of
this study.
September 22, 2017

Mikel Gray, PhD
Editor-in-Chief
JWOCN

Dear Dr. Gray

Thank you for your comments regarding our manuscript and for organizing the reviewer’s feedback so that it was easily identifiable within the context of the manuscript text.

I have made every effort to meet the specified queries and requests for clarification and have included these within the text in blue so as to be easily recognizable. I have removed the comments themselves which were in red. I also noted that for some reason some of the delta symbols (Δ) came to you as squares and I have hopefully corrected all of these. To make sure that format remains proper I have provided a pdf version along with the word document. Also, I have formulated a conclusion paragraph instead of the key points that were originally submitted as I was not aware that these were not needed – at least in that format. Thanks for clarifying that aspect.

I hope that the revised manuscript now has been sufficiently clarified and that we will be able to make the Jan/Feb issue. Please let me know if anything else is needed and again, on behalf of my co-authors and myself, thanks for your help in getting us through this process.

Sincerely,

Harvey N. Mayrovitz, PhD
Professor of Physiology
College of Medical Sciences
Nova Southeastern University
September 22, 2017

Mikel Gray, PhD
Editor-in-Chief
JWOCN

Dear Dr. Gray

Thanks to the reviewers for their time and effort and critical comments and thanks to you for your comments regarding our manuscript and for organizing the reviewer’s feedback so that it was easily identifiable within the context of the manuscript text.

I have made every effort to meet the specified queries and requests for clarification and have included these within the text in blue so as to be easily recognizable. I have removed the comments themselves which were in red. I also noted that for some reason some of the delta symbols (Δ) came to you as squares and I have hopefully corrected all of these. To make sure that format remains proper I have provided a pdf version along with the word document. Also, I have formulated a conclusion paragraph instead of the key points that were originally submitted as I was not aware that these were not needed – at least in that format. Thanks for clarifying that aspect.

I hope that the revised manuscript now has been sufficiently clarified and that we will be able to make the Jan/Feb issue. Please let me know if anything else is needed and again, on behalf of my co-authors and myself, thanks for your help in getting us through this process.

Sincerely,

Harvey N. Mayrovitz, PhD
Professor of Physiology
College of Medical Sciences
Nova Southeastern University
Sacral Skin Temperature Assessed by Thermal Imaging:
Role of Patient Vascular Attributes

Harvey N. Mayrovitz, PhD, College of Medical Sciences, Nova Southeastern University, Fort Lauderdale, Florida
Paige E. Spagna, BS, College of Medical Sciences, Nova Southeastern University, Fort Lauderdale, Florida
Martha C. Taylor, BSN, RN, CWON, Holy Cross Hospital, Fort Lauderdale, Florida

Corresponding Author
Harvey N. Mayrovitz, PhD
College of Medical Sciences
Nova Southeastern University
3200 S. University Drive
Ft. Lauderdale Florida 33328
mayrovit@nova.edu
Phone: 954-262-1313
Fax: 954-262-1802
Conflict of interest statement: none declared
Source of Funding: none
Abstract

Purpose: We tested the hypothesis that temperature differentials detected by thermal imaging of sacral and remote skin areas of critically ill patients delineate individuals with significant vascular disease and presumably at greater risk for pressure injury development.

Design: Prospective observational cohort

Subjects and Setting: The sample comprised 100 patients (58 men, 42 women) with mean (±SD) ages of 70.4 ± 14.4 and 74.0 ± 14.5 years respectively, who were admitted either to a Cardiovascular Intermediate Care Unit (Cardiovascular- ICU step down unit), or to the Neuro-Surgical/ Critical Care- ICU an ICU in the Southeastern region of the United States.

Methods: A commercially available thermal imaging system was used to obtain simultaneous standard photographic and infrared thermal images (11 x 14 inches) that included the patient’s buttocks and remote areas after the patient was off-loaded for about four minutes. Images were processed to determine temperature differences between the sacral region (deemed to have an elevated risk for pressure injury) and a remote region of the skin located at least 10 cm proximal to the sacrum with an average sacrum-to-remote distance of 17.9 ± 3.0 cm that was deemed to be at minimal risk. Prior measurements of healthy subjects showed that sacral skin was on average 0.75°C less than the remote skin site (ΔT = -0.75°C) For the present analysis, a threshold ΔT_{TH} of twice that amount (ΔT = -1.5°C) or more was considered to put a patient at greater than normal risk based on the hypothesis that low sacral temperatures were associated with lowered blood perfusion issues of various clinical conditions. The vascular status of patients who equaled or exceeded this threshold was compared to the other patients.
Results: Thirty-two patients exceeded ΔT\text{TH} with an average ΔT of -1.92 ± 0.62°C. In six patients ΔT was greater than +1.5°C with average of +1.98 ± 0.49°C. The remaining 63 patients had an average ΔT of 0.13 ± 0.58°C. Chi-square analysis of the proportions of patients exceeding or not exceeding thresholds in relation to their known vascular disease status revealed no significant difference between these subgroups.

Conclusions: Although infrared thermal screening may provide visually impressive and potentially useful images in some cases, the use of temperature differentials to detect patients at particularly high risk related to vascular status is not supported by results of this study.

KEY WORDS: pressure ulcer risk, pressure injury, sacrum, thermal imaging, pressure ulcer, vascular status, skin breakdown
Introduction

Hospital-acquired pressure injuries (HAPI) are a common and substantial burden on the health care system, with more than 2.5 million patients in acute-care hospitals treated in the United States annually.¹ Managing PI is estimated to cost the US health system from $9.1 billion to $11.6 billion per year.² Beginning in 2008, the Centers for Medicare and Medicaid Services (CMS) ruled to discontinue hospital reimbursement for costs incurred by hospital-acquired conditions including facility acquired stage 3 or stage 4 PI. According to CMS, the price of managing a single full-thickness HAPI in acute care (as a secondary diagnosis) costs an additional $43,180.00 per hospital stay.³ A primary concern to health-care providers is the significant health-related costs incurred by those patients suffering from HAPIs. The consequences of HAPIs on a patient’s quality of life may include unnecessary pain, costly treatment, increased length of hospital stays, greater comorbidity risk, burden to family, and mortality. It is estimated that each year, up to 60,000 Americans will die prematurely of PU-related complications.⁴ The current National Pressure Ulcer Advisory Panel (NPUAP) staging system delineates a Stage 1 pressure injury as a pressure-related area of intact, discolored skin, with localized non-blanchable erythema.⁵ Stage 1 PI are considered reversible, in that no irreparable tissue damage has occurred. A variant type of pressure injury, referred to by the NPUAP⁵ guidelines as a Deep Tissue Pressure Injury (DTPI), presents as a “purple or maroon localized area of discolored intact skin or blood-filled blisters, due to damage of underlying soft tissue from pressure and/or shear.” DTPIs are wounds of unknown depth, which range in severity depending on the extent of underlying tissue damage and/or necrosis. Thus, in the case of a DTPI, variations in pain and temperature may proceed any visually detectable changes in skin color.⁵
The conflicting nature, given the staging criteria, for distinguishing between these two injuries is based solely on observable and palpable characteristics of the skin and is not reflective of the distinctive etiologies of these injuries. In the case of a DTPI, the outward pattern of necrosis that ensues underneath an area of intact skin has been speculated to progress as rapidly as 48-hours from injury to initial appearance and within 7 to 10 days for further deterioration into a necrotic, full-thickness Stage 3/4 HAPI, regardless of interventions.6,7 Drawing from observations taken from forensic science, Farid8 reported a 7 to 14 day timespan between when the initial tissue injury is thought to occur, and the first clinically observable signs of the injury as it progresses toward necrosis.

It has been stated that more than 100 physiological (intrinsic) and non-physiological (extrinsic) risk factors place adults at greater risk for developing PI.9 Malnutrition, hypotension, incontinence, cerebrovascular disease, diabetes and fractures have been associated with PI development among national inpatient populations.10 Thus, it is not surprising that patients admitted to intensive care units (ICUs) are the hospital population most critically at risk for developing HAPIs. A retrospective study by Kirkland-Kyhn and colleagues11 in a population of ICU patients who developed a sacral DTPI that evolved into a stage 3, stage 4 or unstageable HAPI, found that the odds of developing a DTPI increased by about 7.5\% for each mmHg decrease in diastolic blood pressure, placing those with poor blood perfusion among those at greatest risk for developing one of these injuries.11 This finding may indicate greater vulnerability for tissue breakdown, particularly in critically ill patients, as hemodynamic status is progressively impaired. A review by Berlowitz and Brienza12 suggests that most HAPIs, even those that appear superficial enough to be pressure-induced, developed as a result of a precursory DTPI.
While HAPIs are a known concern for hospitalized patients with vascular disease13, it is unknown if all such patients are similarly at risk. To date, there is no noninvasive method in which patients entering ICU can be expediently and efficiently screened to determine which patients with vascular disease are most likely to develop a DTPI. Measuring skin temperature is one potential strategy that may allow healthcare providers the ability to prospectively determine if an area of intact discoloration will eventually progress into necrosis. A study by Farid and coworkers14 used thermography to discern between cool and warm surface temperatures of pressure-related areas of intact and discolored skin (suspected areas of DTPI). Farid’s group found that by day 7 areas at the discolored site had cooler temperatures and were 31.8 times more likely to progress to necrosis than adjacent warm regions.14 Thermography is a noninvasive and objective technique to index or estimate local hemodynamic status based on skin temperature differentials between and among different sites. An underlying assumption is that tissue regions with blood flow deficits will render skin temperatures less than those in regions not affected. We hypothesized that such temperature differentials are more pronounced in persons with cardiovascular disease and conditions in which localized perfusion pressures are diminished due to regional vascular deficits or systemic hypotension. Our specific hypothesis was that patients with such conditions have a lower relative sacral skin temperature that can be detected via a rapidly obtained thermal image. We tested this hypothesis by examining temperature differentials between this common pressure injury prone region (sacrum) and a remote skin site. For consistency, this remote “control” site was chosen to be at least ten cm distant and proximal to the target sacral site and be in an area well visualized in a photographic image taken of the sacrum and surrounding areas using a commercial thermal imaging system.
Methods

This was a prospective observational study that evaluated a cohort of 100 patients admitted to one of two intensive care units. The buttocks and lower back areas of these patients were imaged by holding a hand-held imaging device at a distance of 30 inches from the sacrum. The image so obtained included simultaneous infrared thermal and standard photographic images. The imaging device was a commercially available, FDA approved imaging system (Scout SCA100, Wound Vision LLC, Indianapolis, Indiana)15,16. Requirements for participation were: adults ≥ 18 years of age who were admitted to one of the following hospital intensive care units: the ICU, Cardiovascular Intermediate Care Unit (Cardiovascular- ICU step down unit), or the Neuro-Surgical/ Critical Care- ICU. Subjects deemed eligible to participate were willing and physically able to being positioned in a lateral recombinant position for a period of about four-minutes, which was the necessary time required to stabilize the exposed skin to ambient temperature. Patients who had not been admitted to one of the named Intensive Care Units were excluded from participating in the study. Patients who could not tolerate being repositioned (either due to an unwillingness to cooperate, pain or deemed too physiologically unstable, as determined by their attending RN) were excluded from participating. Additionally, those unable to tolerate the required four-minute period subsequent to repositioning were excluded from the study. Patients with preexisting sacral ulcers were not eligible to participate in the study. Study procedures were reviewed and approved by the Western Institutional Review Board (WIRB 1163595).

Image Capture Procedure

Prior to imaging, patients were re-positioned to a lateral recumbent position necessary to completely expose the sacral and lower back areas. All clothing or sacral dressings were
removed from the patients’ backsides allowing the areas to acclimate to the room air for about four minutes. This time window was chosen as a compromise to minimize the discomfort to the patient and yet have as much time as possible to allow for any recovery due to the prior lying time.

The ambient room temperature was measured using a handheld digital thermometer and values were recorded just prior to each subject being imaged. Overall room temperature was fairly constant at 22.2 ± 0.6°C. The handheld imaging device was positioned 18 inches away from the patient's sacral skin surface. Positioning was aided by a device feature that provided a visual image of an overlapping laser target on the skin indicating the proper imaging distance. Nothing was in contact with the subject’s skin during the time the image was captured, unless a pair of gloved hands was needed to assist with positioning and exposure of the site. The captured image for analysis consisted of a standard digital photo of an 11 x 14-inch (28 x 35.5 cm) area together with a long-wave infrared thermal image of the same area. This image, that was subsequently used for analysis, included at or near its center the target sacral site and also a remote site located proximal to the sacral site and at least 10 cm distant and for all 100 patients had an average sacral-to-remote site distance of 17.9 ± 3.0 cm (mean ± SD). The thermal image provided a real-time temperature mapping of the entire area. The images were uploaded and stored to a designated computer linked to the imaging device hardware and software. Images were stored in the system software using randomly generated subject numbers unrelated to any of the patients’ identifying information. Pertinent patient medical history and follow-up information was obtained using the hospital’s electronic medical records (EMR) system.
Image Analysis Initial Procedures

All images were analyzed by a co-investigator that was not present or involved during the image acquisition phase. Further, the image analysis was completed prior to any knowledge of the medical condition or past history of the patient. The analysis procedure was standardized as illustrated in Figure 1. Starting with the standard digital image (Figure 1A), a reference point was marked at or near the sacral end of the intergluteal cleft and a reference grid was superimposed over the image (Figure 1B) to define absolute distances as needed. A remote skin site was then selected as a control temperature site (Figure 1C). This site was always selected to be proximal to the target sacral region of interest with, as previously noted, an average distance from the sacral reference point to the center of the control region of 17.9 ± 3.0 cm. Switching to the thermal image (Figure 1D), a one cm² circular control area was placed at the previously selected remote point. The average temperature within this control area was subsequently compared to the average temperature in a target area, which is shown inscribed in the sacral region (Figure 1F). Temperature differentials are expressed as $\Delta T = \text{sacral temperature} - \text{control temperature}$. The system software calculates the average temperatures within the target sacral area and the control area. Examples of patients with different temperature profiles -1.5°C, +1.5°C and 0°C when compared to the distal (control) skin area are illustrated in Figure 2.

Data Analysis

Prior measurements of sacral skin temperatures of healthy subjects showed that sacral skin temperature is on average 0.75°C less than a remote skin site ($\Delta T = -0.75°C$). For the purpose of this analysis a ΔT of twice that amount ($\Delta T = -1.5°C$) or more was considered to place a patient at greater risk based on the hypothesis that reduced relative sacral temperatures of this amount were associated with lowered blood perfusion issues of various clinical conditions.
Comparisons of sacral to control area temperature differentials were used to categorize patients as either higher risk if $\Delta T \geq -1.5^\circ C$ or lower risk if ΔT was otherwise. Three broad categories of clinical classification were used to assess whether temperature differentials were significantly associated with conditions likely to reduce blood perfusion. One was classified as a prior diagnosis of cardiovascular disease (CVD). For the present purpose, the presence of CVD was assigned to any patient with a diagnosis of coronary artery disease, peripheral arterial disease or atherosclerotic heart disease. There were 74 patients in this group. The other classification was for patients who at any time during their hospital stay there was recorded a mean arterial blood pressure (MBP) that was less than 60 mmHg (MBP<60 mmHg). There were 58 patients in this group. A third group comprised patients that had both CAD and a MBP <60 mmHg (CVD + MBP). There were 43 patients in this group. The potential consequence of vascular status and temperature differentials was examined by considering the number of patients within each group who had $\Delta T \leq -1.5$ compared to those with $\Delta T > -1.5$ using Chi Square analysis. In this analysis, the significance level taken to reject the null hypothesis of equality was taken as 0.05.

Results

The sample comprised 100 patients, 58 were men and 42 were women. The mean age (± SD) of male and female participating patients were 70.4 ± 14.4 and 74.0 ± 14.5 years respectively. Their average length of hospital stay was 11.9 ± 11.3 days with the day of imaging being on their 5.4 ± 6.9 hospital-day. Their cumulative Braden Scale for Pressure Sore Risk scale score was 16.5 ± 4.0 with 38 of the 100 patients having known diabetes. Of the 100 patients, 74 had atherosclerotic coronary artery disease, 42 had either acute or chronic renal dysfunction, and 15 had peripheral arterial disease. A total of 14 patients went on to develop a sacral PI.
Temperature Differentials

Thirty-two patients had sacral to control area temperature differentials that met or exceeded the -1.5°C threshold with an average sacral to control area temperature differential of -1.92 ± 0.62°C (Range: -1.5°C to -3.9°C). In contrast, 6 patients had a temperature differential that was ≥ +1.5°C with an average differential of +1.98 ± 0.49°C (Range: 1.5°C to 2.7°C). The remaining 63 patients had an average temperature differential of 0.13 ± 0.58°C (Range: -0.90°C – 1.3°C).

Table 1 summarizes the number of patients with and without the specified condition (CVD or MBP or both) and the number of patients within each group that exceed the low temperature threshold (∆T ≤ -1.5°C) or whose temperature differential is greater (∆T > -1.5°C). Analysis via χ² and the associated p-values indicate no statistically significant discrimination attributable to temperature differentials are detected for any of the three groupings.

Discussion

The primary aim of this study was to test the hypothesis that patients with vascular impairments would have a lower sacral temperature relative to a remote skin area deemed at much lesser risk for breakdown. A second goal was to capitalize on such findings if present and use these temperature differentials as a means to predict PI risk via thermographic images. Based on the results of the χ² analysis the main findings of this study do not support the primary hypothesis. This means that patients with or without underlying vascular disease or low perfusion pressures may present with lowered relative sacral temperatures suggesting that such temperature gradients in and of themselves do not provide a general stratification procedure at this time, at least as represented by the ICU patients of the present study.
It is our belief that the absence of a clear separation is in part related to the specifics of any underlying vascular deficit. For example, a patient with documented peripheral arterial disease may or may not have a blood flow deficit of the sacral skin based on the location and extent of the underlying vascular lesions. Along the same lines, patients with documented coronary artery disease may or may not have perfusion deficits in the sacral region detectable via thermal imaging. Our findings suggest that a clearer separation may be achievable if more specific and detailed vascular data were available than was available in the present study.

Attempts to use temperature differentials to anticipate the course of patients with DTPIs as an ancillary investigation was also not successful. Of the 16 patients with documented DTI, seven had documented sacral PI, but only two had prior sacral to control area temperature differences ≤-1.5°C. Moreover, of the 14 patients with documented PI, five were observed to have prior temperature differentials that were ≤-1.5°C.

Limitations

The four-minute window was the maximum time many of the subjects could tolerate lying on their side. While this is a limitation, it is also represents a realistic clinical consideration when evaluating the true utility of such technologies applied in the clinical setting. In order for such devices to be clinically useful, a patients’ level of comfort and threshold to tolerate position changes required for imaging must be considered. Thus, although we would have liked to allow a greater time for acclimation to ambient temperature, the methods used in this study is reflective of the acute setting in which the device would theoretically be employed.

Although the hypothesis of this study is not supported by the current experimental data, our findings do not exclude the utility of thermographic imaging in other settings. Thermal imaging has shown some potential to predict time-to-healing based on wound bed temperature.18
as a way to improve PI detection.19 It has also been evaluated as a way to predict outcomes of patients with discolored skin in nursing facilities20. As we learn more about the confounding factors that influence the development and progression of DTPIs to skin breakdown we will be better positioned to apply thermography and other detection tools to better detect and circumvent these injuries, especially early on in the process, while they may still be reversible.

Conclusions

This study tested the hypothesis that low sacral temperatures would most likely be observed in patients with vascular deficits, and that if detected, would identify patients at greatest risk of suffering a Hospital-acquired pressure injury. The test of the hypothesis was done using thermal imaging of buttocks and remote areas of 100 ICU patients, yielding a range of easily obtainable temperature differentials between sacrum and remote skin areas. However, the ability of these temperature differentials to distinguish between patients with or without vascular deficits as a measure of increased breakdown likelihood was inconclusive. While the results did not demonstrate a statistically significant reduced skin temperature between sacrum and remote skin sites, thermographic imaging may have other uses as a potentially useful screening device to measure a patient’s sacral region upon admission and throughout their hospital stay.
References

<table>
<thead>
<tr>
<th>Group</th>
<th>$\Delta T \leq -1.5^\circ C$</th>
<th>$\Delta T > -1.5^\circ C$</th>
<th>Total Patients</th>
<th>Chi-square</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group CVD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With CVD</td>
<td>23</td>
<td>51</td>
<td>74</td>
<td>0.598</td>
<td>0.439</td>
</tr>
<tr>
<td>No CVD</td>
<td>6</td>
<td>20</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group MBP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBP < 60 mmHg</td>
<td>20</td>
<td>38</td>
<td>58</td>
<td>2.016</td>
<td>0.156</td>
</tr>
<tr>
<td>MBP >= 60 mmHg</td>
<td>9</td>
<td>33</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group CVD & MBP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both conditions</td>
<td>15</td>
<td>28</td>
<td>43</td>
<td>1.268</td>
<td>0.260</td>
</tr>
<tr>
<td>Neither condition</td>
<td>14</td>
<td>43</td>
<td>57</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Group conditions compared with temperature differentials

Numeric entries are the number of patients with the specified condition and differential temperature range between target sacral area and control area. Chi-squared values and associated p-values indicate no statistically significant discrimination attributable to temperature differentials are detected. CVD = documented cardiovascular disease, MBP = mean arterial blood pressure
FIGURE LEGENDS

FIGURE 1. IMAGE ANALYSIS PRELIMINARY PROCEDURES

Figure A through C show sample digital images and D through F thermal images. A. Starting with the standard digital image, a reference point is marked at or near the sacral end of the intergluteal cleft. B. A reference grid is superimposed to define absolute distances as needed. C. A remote skin site is selected as a control temperature site. D. On the thermal image, a one cm2 circular control area is placed for subsequent comparison to the sacral target area. E. The control area shown without superimposed grid. F. Target area inscribed within the sacral region on the thermal image. The system software calculates the average temperatures within the target sacral area and the control area. In this example, the average temperature in the target area was 1.3°C greater than in the control area. The imbedded text in B, C and D is internal location information and not relevant to the illustrative material shown in the figures.

FIGURE 2. REPRESENTATIVE IMAGES

Top row shows thermal images and bottom row shows corresponding digital photo of same area. In each case the superimposed text on the thermal images shows the distance from the control area to the sacral target (L) and the temperature difference (DT) between these areas. A) target area 1.5°C less than control, B) target area 1.5°C greater than control, C) target are temperature the same as the control.
Figure 1

A. Sacral reference marked
B. Superimposed grid
C. Remote control point
D. Thermal with control area
E. Thermal with no grid
F. Sacral target area inscribed