Skin-to-Fat Water in Diabetes Mellitus Assessed by Tissue Dielectric Constant (TDC):
Variations with Respect to Depth, Anatomical Site and HbA1C

Irina Volosko OMS-II, Bansari Sarkar OMS-II, Naushira Pandya MD and Harvey N Mayrovitz PhD, Colleges of Osteopathic Medicine and Medical Sciences, NSU

Measurement Methods

Prior research has indicated alterations in skin-to-fat tissue water especially prevalent in foot dorsum skin but specific mechanisms have not been clarified. Literature is consistent with the theory that hyperglycemia-induced non-enzymatic glycation of structural and regulatory proteins may play a role in the pathogenesis of diabetic complications. In this scenario, excess supply of glucose in the blood plasma leads to a non-enzymatic chemical reaction between the carbonyl group of glucose and the amino acid of protein. This glycation of structural and regulatory proteins might play a role in the pathogenesis of diabetic skin complications.

Purpose

The purpose of this study is to test the hypothesis that in persons with DM the dermal collagen glycation displaces bound water and thereby decreases skin tissue water. If true then a measurable relationship between skin water and HbA1c in persons with DM. Hence, we are testing if there is a positive relationship between skin-to-fat tissue water as measured by TDC, and HbA1c in persons with DM. Further because of already demonstrated differences in TDC values between genders these measurements are being conducted in both male and female subjects.

Protocol

BIOMEPDANCE MEASUREMENTS were done to obtain total body composition using the Ironman InnerScan Body Composition Monitor (Figure 3c). The Ironman is a non-invasive, battery operated device that measures the electrical impedance value of the body while the subject is in the standing position. The subject’s gender, birth date, and height are entered into the device after which the subject removes shoes and socks and step onto the scale and grip two attached handles for a period of about 20 seconds (Figure 2). Relevant measured parameters include: weight, body fat percent, body water percentage, muscle mass, visceral composition, BMI.

TDC MEASUREMENTS were obtained using the MoistureMeter-D, Delfin Inc. (Figure 1). The MoistureMeter is a non-invasive, hand-held device utilizing gold plated brass open-ended coaxial probes (Figure 3a, b). The probe measures TDC at a frequency of 300 MHz. For the purpose of this study probes used had an effective penetration depths of 0.5 mm, 1.5 mm, 2.5 mm and 5.0 mm. For reference, pure water has a TDC value of 76 at 34°C.

Effective Penetration Depth

FIG 1. TDC Measurements

Tissue Dielectric Constant is directly related to H2O in the measuring volume. The unit is the Moisture Meter-D (Delfin Tech). A coaxial probe contacts skin for about 10 seconds. The probe, connected to a control and display device, measures TDC at 300 MHz so the TDC value depends on free and bound H2O. TDC was measured to effective depths of 0.5 mm, 1.5 mm, 2.5 mm and 5.0 mm. As reference, pure H2O has a dielectric constant value of 76 at 34°C.

FIG 2. Body Composition

Biocomposition was used to estimate total body & segmental composition parameters including total body %Fat & %Fat and muscle mass (MM) & arm & leg %Fat & MM. The method depends on passing a small electrical current, measuring the impedance and using a model representation of the body components.

RESULTS AND ANALYSIS

Figure 3. TDC by Site and Depth. Comparisons among depths showed that TDC values monotonically decreased from the most shallow at 0.5 mm to the deepest at 5.0 mm (p<0.01). TDC values at each depth were significantly different from each of the others. TDC values tended to be highest at the foot, middle at the leg and least at the forearm. However statistical significance of these differences depended on the measurement depth being highly significant at 5.0 mm (p<0.001) and not significant at 0.5 mm. However no significant negative correlation between TDC values and HbA1c was found at any depth or site except for the foot dorsum as shown in FIG 4.

TABLE 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Mean ± Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>51.86</td>
<td>59.9 ± 14.7</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>29.1-36.6</td>
<td>27.1 ± 5.1</td>
</tr>
<tr>
<td>HbA1c (check)</td>
<td>5.5-12.9</td>
<td>8.1 ± 1.8</td>
</tr>
<tr>
<td>Glucose (mmol/L)</td>
<td>92-349</td>
<td>171.3 ± 61.7</td>
</tr>
<tr>
<td>Total Body Water (%)</td>
<td>40.6-60.4</td>
<td>48.6 ± 5.4</td>
</tr>
<tr>
<td>Total Body Fat (%)</td>
<td>15.6-43.8</td>
<td>32.4 ± 7.5</td>
</tr>
<tr>
<td>BP Systolic (mmHg)</td>
<td>98-180</td>
<td>121.2 ± 20</td>
</tr>
<tr>
<td>BP Diastolic (mmHg)</td>
<td>50-100</td>
<td>72 ± 11.9</td>
</tr>
</tbody>
</table>

FIG 3. TDC by Site and Depth. Comparisons among depths showed that TDC values monotonically decreased from the most shallow at 0.5 mm to the deepest at 5.0 mm (p<0.01). TDC values at each depth were significantly different from each of the others. TDC values tended to be highest at the foot, middle at the leg and least at the forearm. However statistical significance of these differences depended on the measurement depth being highly significant at 5.0 mm (p<0.001) and not significant at 0.5 mm. However no significant negative correlation between TDC values and HbA1c was found at any depth or site except for the foot dorsum as shown in FIG 4.

FIG 4. HbA1c and TDC scatter plot at each measurement depth (mm).

Y = 49.9 – 0.98X
r = 0.352
p = 0.03
N = 38

Conclusion

This study’s focus was to test the hypothesis that HbA1c and skin-to-fat tissue water were related as measured at different depths and different sites of persons with DM. A trend for a negative correlation between TDC values and HbA1c was statistically significant only for foot dorsum for a measurement depth of 1.5 mm (FIG 4). About 12% of TDC variation could be explained by HbA1c variation. However, this dependence is unlikely to be of clinical importance and may be related to a similarly found negative foot TDC-HbA1c correlation with total body fat. The TDC depth and site data provide hitherto-to-for unavailable baseline information on patients with diabetes.

References